Difference between revisions of "1980 AHSME Problems/Problem 26"

(Solution)
(Solution)
Line 12: Line 12:
 
== Solution ==
 
== Solution ==
  
Let <math>A</math>, <math>B</math>, <math>C</math>, and <math>D</math> be the centers of the four spheres with radius <math>1</math>.  These points must form a regular tetrahedron of side length <math>2</math>.  Let <math>O</math> be the center of <math>\triangle ABC</math>. Then <math>OA = \frac{2\sqrt{3}}{3}</math>.  By the Pythagorean Theorem, the height <math>DO</math> of this pyramid must be <math>\sqrt{2^2 - \left(\frac{2\sqrt{3}}{3}\right)^2} = \frac{2\sqrt{6}}{3}</math>.  Let <math>I</math> be the center of tetrahedron <math>ABCD</math>.  Then <math>IABC</math>, <math>IABD</math>, <math>IACD</math>, and <math>IBCD</math> are all congruent tetrahedra, each with <math>\frac{1}{4}</math> of the volume of <math>ABCD</math>.  Since tetrahedra <math>IABC</math> and <math>ABCD</math> share base <math>ABC</math>, the height <math>IO</math> of tetrahedron <math>IABC</math>, and therefore the inradius of tetrahedron <math>ABCD</math>, must be <math>\frac{1}{4} \cdot \frac{2\sqrt{3}}{3} = \frac{\sqrt{6}}/{6}</math>.   
+
Let <math>A</math>, <math>B</math>, <math>C</math>, and <math>D</math> be the centers of the four spheres with radius <math>1</math>.  These points must form a regular tetrahedron of side length <math>2</math>.  Let <math>O</math> be the center of <math>\triangle ABC</math>. Then <math>OA = \frac{2\sqrt{3}}{3}</math>.  By the Pythagorean Theorem, the height <math>DO</math> of tetrahedron <math>ABCD</math> must be <math>\sqrt{2^2 - \left(\frac{2\sqrt{3}}{3}\right)^2} = \frac{2\sqrt{6}}{3}</math>.  Let <math>I</math> be the center of tetrahedron <math>ABCD</math>.  Then <math>IABC</math>, <math>IABD</math>, <math>IACD</math>, and <math>IBCD</math> are all congruent tetrahedra, each with <math>\frac{1}{4}</math> of the volume of <math>ABCD</math>.  Since tetrahedra <math>IABC</math> and <math>ABCD</math> share base <math>ABC</math>, the height <math>IO</math> of tetrahedron <math>IABC</math>, and therefore the inradius of tetrahedron <math>ABCD</math>, must be <math>\frac{1}{4} \cdot \frac{2\sqrt{3}}{3} = \frac{\sqrt{6}}{6}</math>.  \\
 +
 
 +
Let <math>EFGH</math> be the tetrahedron circumscribed around the spheres, with <math>AE</math>, <math>BF</math>, <math>CG</math>, and <math>DH</math> intersecting at <math>I</math>.  Planes <math>ABC</math> and <math>EFG</math> must be parallel and a distance <math>1</math> from each other.  So the distance from <math>I</math> to plane <math>EFG</math>, and therefore the inradius of tetrahedron <math>EFGH</math>, must be <math>1 + \frac{\sqrt{6}}{6}</math>.  Therefore, the ratio of the inradius of tetrahedron <math>EFGH</math> to the inradius of tetrahedron <math>ABCD</math> is <math>\frac{1+\sqrt{6}/6}{\sqrt{6}/6} = 1 + \sqrt{6}</math>.  Therefore, the ratio of the side length of tetrahedron <math>EFGH</math> to the side length of tetrahedron <math>ABCD</math> must also be <math>1+\sqrt{6}</math>, and therefore <math>s = 2 (1+\sqrt{6}) = 2 + 2\sqrt{6}</math> <math>\fbox{(E)}</math>
  
 
-j4andrews
 
-j4andrews
 
 
 
 
<math>\fbox{E}</math>
 
  
 
== See also ==
 
== See also ==

Revision as of 05:00, 25 June 2025

Problem

Four balls of radius $1$ are mutually tangent, three resting on the floor and the fourth resting on the others. A tetrahedron, each of whose edges have length $s$, is circumscribed around the balls. Then $s$ equals

$\text{(A)} \ 4\sqrt 2 \qquad  \text{(B)} \ 4\sqrt 3 \qquad  \text{(C)} \ 2\sqrt 6 \qquad  \text{(D)}\ 1+2\sqrt 6\qquad \text{(E)}\ 2+2\sqrt 6$

Solution

Let $A$, $B$, $C$, and $D$ be the centers of the four spheres with radius $1$. These points must form a regular tetrahedron of side length $2$. Let $O$ be the center of $\triangle ABC$. Then $OA = \frac{2\sqrt{3}}{3}$. By the Pythagorean Theorem, the height $DO$ of tetrahedron $ABCD$ must be $\sqrt{2^2 - \left(\frac{2\sqrt{3}}{3}\right)^2} = \frac{2\sqrt{6}}{3}$. Let $I$ be the center of tetrahedron $ABCD$. Then $IABC$, $IABD$, $IACD$, and $IBCD$ are all congruent tetrahedra, each with $\frac{1}{4}$ of the volume of $ABCD$. Since tetrahedra $IABC$ and $ABCD$ share base $ABC$, the height $IO$ of tetrahedron $IABC$, and therefore the inradius of tetrahedron $ABCD$, must be $\frac{1}{4} \cdot \frac{2\sqrt{3}}{3} = \frac{\sqrt{6}}{6}$. \\

Let $EFGH$ be the tetrahedron circumscribed around the spheres, with $AE$, $BF$, $CG$, and $DH$ intersecting at $I$. Planes $ABC$ and $EFG$ must be parallel and a distance $1$ from each other. So the distance from $I$ to plane $EFG$, and therefore the inradius of tetrahedron $EFGH$, must be $1 + \frac{\sqrt{6}}{6}$. Therefore, the ratio of the inradius of tetrahedron $EFGH$ to the inradius of tetrahedron $ABCD$ is $\frac{1+\sqrt{6}/6}{\sqrt{6}/6} = 1 + \sqrt{6}$. Therefore, the ratio of the side length of tetrahedron $EFGH$ to the side length of tetrahedron $ABCD$ must also be $1+\sqrt{6}$, and therefore $s = 2 (1+\sqrt{6}) = 2 + 2\sqrt{6}$ $\fbox{(E)}$

-j4andrews  

See also

1980 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 25
Followed by
Problem 27
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC Logo.png