Difference between revisions of "1984 AIME Problems/Problem 9"
m (meh 3D asy is difficult) |
(replace with 3d asymptote) |
||
| Line 3: | Line 3: | ||
== Solution == | == Solution == | ||
| − | < | + | <span style="font-size:50%">For non-asymptote version of image, see [[:Image:1984_AIME-9.png]].</span><center><asy> |
| − | import three; pointpen=black;pathpen=black; | + | size(200); |
| − | triple A=(0,0,0),B=(3,0,0),C=( | + | import three; pointpen=black;pathpen=black+linewidth(0.6); pen small = fontsize(10); |
| − | + | triple A=(0,0,0),B=(3,0,0),C=(1.8,10,0),D=(1.5,4,4),Da=(D.x,D.y,0),Db=(D.x,0,0); | |
| − | + | currentprojection=perspective(16,-10,8); | |
| − | |||
| − | |||
| − | |||
| − | Position face <math>ABC</math> on the bottom. Since <math>[\triangle ABD] = 12 = \frac{1}{2} \cdot AB \cdot h_{ABD}</math>, we find that <math>h_{ABD} = 8</math>. The height of <math>ABD</math> forms a <math>30-60-90</math> with the height of the tetrahedron, so <math>h = \frac{1}{2} 8 = 4</math>. The volume of the tetrahedron is thus <math>\frac{1}{3}Bh = \frac{1}{3} 15 \cdot 4 = \boxed{020}</math>. | + | /* draw pyramid - other lines + angles */ |
| + | D(A--B--C--A--D--B--D--C); | ||
| + | D(D--Da--Db--cycle);D(rightanglemark(D,Da,Db));D(rightanglemark(A,Db,D));D(anglemark(Da,Db,D,12)); | ||
| + | |||
| + | /* labeling points */ | ||
| + | MP("A",A);MP("B",B);MP("C",C);MP("D",D,N);MP("30^{\circ}",Db+(0,.35,0.08),NE,small); | ||
| + | MP("3",(A+B)/2); MP("15\mathrm{cm}^2",(Db+C)/2+(0,-0.5,-0.1),NE,small); MP("12\mathrm{cm}^2",(A+D)/2,NW,small); | ||
| + | </asy></center> | ||
| + | |||
| + | Position face <math>ABC</math> on the bottom. Since <math>[\triangle ABD] = 12 = \frac{1}{2} \cdot AB \cdot h_{ABD}</math>, we find that <math>h_{ABD} = 8</math>. The height of <math>ABD</math> forms a <math>30-60-90</math> with the height of the tetrahedron, so <math>h = \frac{1}{2} (8) = 4</math>. The volume of the tetrahedron is thus <math>\frac{1}{3}Bh = \frac{1}{3} 15 \cdot 4 = \boxed{020}</math>. | ||
== See also == | == See also == | ||
Revision as of 20:06, 24 April 2008
Problem
In tetrahedron
, edge
has length 3 cm. The area of face
is
and the area of face
is
. These two faces meet each other at a
angle. Find the volume of the tetrahedron in
.
Solution
For non-asymptote version of image, see Image:1984_AIME-9.png.
size(200);
import three; pointpen=black;pathpen=black+linewidth(0.6); pen small = fontsize(10);
triple A=(0,0,0),B=(3,0,0),C=(1.8,10,0),D=(1.5,4,4),Da=(D.x,D.y,0),Db=(D.x,0,0);
currentprojection=perspective(16,-10,8);
/* draw pyramid - other lines + angles */
D(A--B--C--A--D--B--D--C);
D(D--Da--Db--cycle);D(rightanglemark(D,Da,Db));D(rightanglemark(A,Db,D));D(anglemark(Da,Db,D,12));
/* labeling points */
MP("A",A);MP("B",B);MP("C",C);MP("D",D,N);MP("30^{\circ}",Db+(0,.35,0.08),NE,small);
MP("3",(A+B)/2); MP("15\mathrm{cm}^2",(Db+C)/2+(0,-0.5,-0.1),NE,small); MP("12\mathrm{cm}^2",(A+D)/2,NW,small);
(Error making remote request. Unknown error_msg)Position face
on the bottom. Since
, we find that
. The height of
forms a
with the height of the tetrahedron, so
. The volume of the tetrahedron is thus
.
See also
| 1984 AIME (Problems • Answer Key • Resources) | ||
| Preceded by Problem 8 |
Followed by Problem 10 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
| All AIME Problems and Solutions | ||