Difference between revisions of "2005 AMC 12A Problems/Problem 16"
(Tag: Undo) |
Sevenoptimus (talk | contribs) m (Removed unnecessary links in problem statement) |
||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | Three | + | Three circles of radius <math>s</math> are drawn in the first quadrant of the <math>xy</math>-plane. The first circle is tangent to both axes, the second is tangent to the first circle and the <math>x</math>-axis, and the third is tangent to the first circle and the <math>y</math>-axis. A circle of radius <math>r > s</math> is tangent to both axes and to the second and third circles. What is <math>r/s</math>? |
<asy> | <asy> |
Revision as of 14:56, 1 July 2025
Contents
Problem
Three circles of radius are drawn in the first quadrant of the
-plane. The first circle is tangent to both axes, the second is tangent to the first circle and the
-axis, and the third is tangent to the first circle and the
-axis. A circle of radius
is tangent to both axes and to the second and third circles. What is
?
Solution
Solution 1
Set so that we only have to find
. Draw the segment between the center of the third circle and the large circle; this has length
. We then draw the radius of the large circle that is perpendicular to the x-axis, and draw the perpendicular from this radius to the center of the third circle. This gives us a right triangle with legs
and hypotenuse
. The Pythagorean Theorem yields:



Quite obviously , so
.
See also
2005 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 15 |
Followed by Problem 17 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.