Difference between revisions of "2005 AMC 12A Problems/Problem 21"

(solution)
 
m (Improved formatting of problem statement)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
 
==Problem==
 
==Problem==
How many ordered triples of [[integer]]s <math>(a,b,c)</math>, with <math>a \ge 2</math>, <math>b\ge 1</math>, and <math>c \ge 0</math>, satisfy both <math>\log_a b = c^{2005}</math> and <math>a + b + c = 2005</math>?
+
How many ordered triples of integers <math>(a,b,c)</math>, with <math>a \geq 2</math>, <math>b \geq 1</math>, and <math>c \geq 0</math>, satisfy both <math>\log_{a}b = c^{2005}</math> and <math>a + b + c = 2005</math>?
  
 
<math>\mathrm{(A)} \ 0 \qquad \mathrm{(B)} \ 1 \qquad \mathrm{(C)} \ 2 \qquad \mathrm{(D)} \ 3 \qquad \mathrm{(E)} \ 4</math>
 
<math>\mathrm{(A)} \ 0 \qquad \mathrm{(B)} \ 1 \qquad \mathrm{(C)} \ 2 \qquad \mathrm{(D)} \ 3 \qquad \mathrm{(E)} \ 4</math>
Line 17: Line 17:
  
 
[[Category:Introductory Algebra Problems]]
 
[[Category:Introductory Algebra Problems]]
 +
{{MAA Notice}}

Latest revision as of 15:03, 1 July 2025

Problem

How many ordered triples of integers $(a,b,c)$, with $a \geq 2$, $b \geq 1$, and $c \geq 0$, satisfy both $\log_{a}b = c^{2005}$ and $a + b + c = 2005$?

$\mathrm{(A)} \ 0 \qquad \mathrm{(B)} \ 1 \qquad \mathrm{(C)} \ 2 \qquad \mathrm{(D)} \ 3 \qquad \mathrm{(E)} \ 4$

Solution

$a^{c^{2005}} = b$

Casework upon $c$:

  • $c = 0$: Then $a^0 = b \Longrightarrow b = 1$. Thus we get $(2004,1,0)$.
  • $c = 1$: Then $a^1 = b \Longrightarrow a = b$. Thus we get $(1002,1002,1)$.
  • $c \ge 2$: Then the exponent of $a$ becomes huge, and since $a \ge 2$ there is no way we can satisfy the second condition. Hence we have two ordered triples $\mathrm{(C)}$.

See also

2005 AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 20
Followed by
Problem 22
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC Logo.png