Difference between revisions of "2005 AMC 10A Problems/Problem 4"

(Solution 2)
m (Improved formatting of answer choices)
 
(13 intermediate revisions by 5 users not shown)
Line 1: Line 1:
 
==Problem==
 
==Problem==
A rectangle with a [[diagonal]] of length <math>x</math> is twice as long as it is wide. What is the area of the rectangle?  
+
A rectangle with a diagonal of length <math>x</math> is twice as long as it is wide. What is the area of the rectangle?  
 
 
<math> \mathrm{(A) \ } \frac{1}{4}x^2\qquad \mathrm{(B) \ } \frac{2}{5}x^2\qquad \mathrm{(C) \ } \frac{1}{2}x^2\qquad \mathrm{(D) \ } x^2\qquad \mathrm{(E) \ } \frac{3}{2}x^2 </math>
 
 
 
==Video Solution==
 
CHECK OUT Video Solution: https://youtu.be/X8QyT5RR-_M
 
  
 +
<math>
 +
\textbf{(A) } \frac{1}{4}x^2\qquad \textbf{(B) } \frac{2}{5}x^2\qquad \textbf{(C) } \frac{1}{2}x^2\qquad \textbf{(D) } x^2\qquad \textbf{(E) } \frac{3}{2}x^2
 +
</math>
  
 
==Solution 1==
 
==Solution 1==
 +
Let's set the length to <math>2</math> and the width to <math>1</math>, so the rectangle has area <math>2 \cdot 1 = 2</math> and diagonal <math>x = \sqrt{1^2+2^2} = \sqrt{5}</math> (by Pythagoras' theorem).
  
Let's set our length to <math>2</math> and our width to <math>1</math>.
+
Now we can plug this value into the answer choices and test which one will give our desired area of <math>2</math>. (Note that all of the answer choices contain <math>x^2</math>, so keep in mind that <math>\left(\sqrt{5}\right)^2 = 5</math>.)
 
 
We have our area as <math>2*1 = 2</math> and our diagonal: <math>x</math> as <math>\sqrt{1^2+2^2} = \sqrt{5}</math> (Pythagoras Theorem)
 
 
 
Now we can plug this value into the answer choices and test which one will give our desired area of <math>2</math>.
 
 
 
* All of the answer choices have our <math>x</math> value squared, so keep in mind that <math>\sqrt{5}^2 = 5</math>
 
 
 
Through testing, we see that <math>{2/5}*\sqrt{5}^2 = 2</math>
 
  
So our correct answer choice is <math>\mathrm{(B) \ } \frac{2}{5}x^2\qquad</math>
+
We eventually find that <math>\frac{2}{5} \cdot \left(\sqrt{5}\right)^2 = 2</math>, so the correct answer is <math>\boxed{\textbf{(B) } \frac{2}{5}x^2}</math>.
  
 
-JinhoK
 
-JinhoK
  
 
==Solution 2==
 
==Solution 2==
 +
Call the length <math>2l</math> and the width <math>l</math>, so the area of the rectangle is <math>2l \cdot l = 2l^2</math>. As in Solution 1, <math>x</math> is the hypotenuse of the right triangle with legs <math>2l</math> and <math>l</math>, so by Pythagoras' theorem, <math>x = \sqrt{\left(2l\right)^2+l^2} = \sqrt{4l^2+l^2} = \sqrt{5l^2}</math>. This becomes <math>l^2 = \frac{x^2}{5}</math>, and therefore the area is <math>2l^2 = \boxed{\textbf{(B) } \frac{2}{5}x^2}</math>.
  
Call the length <math>2l</math> and the width <math>l</math>.
+
-mobius247
 
 
The area of the rectangle is <math>2l*l = 2l^2</math>
 
 
 
<math>x</math> is the hypotenuse of the right triangle with <math>2l</math> and <math>l</math> as legs. By the Pythagorean theorem, <math>(2l)^2+l^2 = x^2</math>
 
 
 
<math>4l^2 + l^2 = x^2</math>,  <math>5l^2 = x^2</math>,  <math>l^2 = \frac{x^2}{5}</math>.
 
  
Therefore, the area is <math>\frac{2}{5}x^2\ \Longrightarrow \mathrm{(B) \ } </math>
+
==Video Solution 1==
 
+
https://youtu.be/X8QyT5RR-_M
-mobius247
 
  
 +
==Video Solution 2==
 +
https://youtu.be/5Bz7PC-tgyU
  
<math>\frac{1200}{50}=24 \Longrightarrow \mathrm{(B)}</math>
+
~Charles3829
  
 
==See also==
 
==See also==

Latest revision as of 17:02, 1 July 2025

Problem

A rectangle with a diagonal of length $x$ is twice as long as it is wide. What is the area of the rectangle?

$\textbf{(A) } \frac{1}{4}x^2\qquad \textbf{(B) } \frac{2}{5}x^2\qquad \textbf{(C) } \frac{1}{2}x^2\qquad \textbf{(D) } x^2\qquad \textbf{(E) } \frac{3}{2}x^2$

Solution 1

Let's set the length to $2$ and the width to $1$, so the rectangle has area $2 \cdot 1 = 2$ and diagonal $x = \sqrt{1^2+2^2} = \sqrt{5}$ (by Pythagoras' theorem).

Now we can plug this value into the answer choices and test which one will give our desired area of $2$. (Note that all of the answer choices contain $x^2$, so keep in mind that $\left(\sqrt{5}\right)^2 = 5$.)

We eventually find that $\frac{2}{5} \cdot \left(\sqrt{5}\right)^2 = 2$, so the correct answer is $\boxed{\textbf{(B) } \frac{2}{5}x^2}$.

-JinhoK

Solution 2

Call the length $2l$ and the width $l$, so the area of the rectangle is $2l \cdot l = 2l^2$. As in Solution 1, $x$ is the hypotenuse of the right triangle with legs $2l$ and $l$, so by Pythagoras' theorem, $x = \sqrt{\left(2l\right)^2+l^2} = \sqrt{4l^2+l^2} = \sqrt{5l^2}$. This becomes $l^2 = \frac{x^2}{5}$, and therefore the area is $2l^2 = \boxed{\textbf{(B) } \frac{2}{5}x^2}$.

-mobius247

Video Solution 1

https://youtu.be/X8QyT5RR-_M

Video Solution 2

https://youtu.be/5Bz7PC-tgyU

~Charles3829

See also

2005 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC Logo.png