Difference between revisions of "2005 AMC 10A Problems/Problem 6"

m (Improved formatting)
m (Improved formatting of answer choices)
 
Line 2: Line 2:
 
The average (mean) of <math>20</math> numbers is <math>30</math>, and the average of <math>30</math> other numbers is <math>20</math>. What is the average of all <math>50</math> numbers?
 
The average (mean) of <math>20</math> numbers is <math>30</math>, and the average of <math>30</math> other numbers is <math>20</math>. What is the average of all <math>50</math> numbers?
  
<math> \mathrm{(A) } \ 23\qquad \mathrm{(B) } \ 24\qquad \mathrm{(C) } \ 25\qquad \mathrm{(D) } \ 26\qquad \mathrm{(E) } \ 27 </math>
+
<math>
 +
\textbf{(A) } 23\qquad \textbf{(B) } 24\qquad \textbf{(C) } 25\qquad \textbf{(D) } 26\qquad \textbf{(E) } 27
 +
</math>
  
 
==Solution==
 
==Solution==
Line 11: Line 13:
 
So the sum of all <math>50</math> numbers is <math>600+600=1200</math>.
 
So the sum of all <math>50</math> numbers is <math>600+600=1200</math>.
  
Therefore, the average of all <math>50</math> numbers is <math>\frac{1200}{50}=\boxed{\mathrm{(B) } \ 24}</math>.
+
Therefore, the average of all <math>50</math> numbers is <math>\frac{1200}{50}=\boxed{\textbf{(B) } 24}</math>.
  
 
==Video Solution==
 
==Video Solution==

Latest revision as of 17:03, 1 July 2025

Problem

The average (mean) of $20$ numbers is $30$, and the average of $30$ other numbers is $20$. What is the average of all $50$ numbers?

$\textbf{(A) } 23\qquad \textbf{(B) } 24\qquad \textbf{(C) } 25\qquad \textbf{(D) } 26\qquad \textbf{(E) } 27$

Solution

Since the average of the first $20$ numbers is $30$, their sum is $20\cdot30=600$.

Since the average of $30$ other numbers is $20$, their sum is $30\cdot20=600$.

So the sum of all $50$ numbers is $600+600=1200$.

Therefore, the average of all $50$ numbers is $\frac{1200}{50}=\boxed{\textbf{(B) } 24}$.

Video Solution

https://youtu.be/kLZ3sbmfUb4

~Charles3829

See also

2005 AMC 10A (ProblemsAnswer KeyResources)
Preceded by
Problem 5
Followed by
Problem 7
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 10 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC Logo.png