Difference between revisions of "2005 AMC 10A Problems/Problem 15"
Pinkdevil777 (talk | contribs) (→Solution 2) |
Sevenoptimus (talk | contribs) m (Improved formatting) |
||
| (36 intermediate revisions by 15 users not shown) | |||
| Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
| − | How many positive cubes divide <math> 3! \cdot 5! \cdot 7! </math> ? | + | How many positive cubes divide <math>3! \cdot 5! \cdot 7!</math>? |
| − | <math> \ | + | <math> |
| + | \textbf{(A) } 2\qquad \textbf{(B) } 3\qquad \textbf{(C) } 4\qquad \textbf{(D) } 5\qquad \textbf{(E) } 6 | ||
| + | </math> | ||
| − | ==Solution== | + | == Solution 1 == |
| − | <math> 3! \cdot 5! \cdot 7! = (3\cdot2\cdot1) \cdot (5\cdot4\cdot3\cdot2\cdot1) \cdot (7\cdot6\cdot5\cdot4\cdot3\cdot2\cdot1) = 2^{8}\cdot3^{4}\cdot5^{2}\cdot7 | + | We obtain <math> 3! \cdot 5! \cdot 7! = (3\cdot2\cdot1) \cdot (5\cdot4\cdot3\cdot2\cdot1) \cdot (7\cdot6\cdot5\cdot4\cdot3\cdot2\cdot1) = 2^{8}\cdot3^{4}\cdot5^{2}\cdot7</math>. |
| − | Therefore, a | + | Therefore, a perfect cube that divides <math>3! \cdot 5! \cdot 7! </math> must be of the form <math>2^{a}\cdot3^{b}\cdot5^{c}\cdot7^{d}</math>, where <math>a</math>, <math>b</math>, <math>c</math>, and <math>d</math> are non-negative multiples of <math>3</math> that are less than or equal to <math>8</math>, <math>5</math>, <math>2</math> and <math>1</math> respectively. |
| − | + | This means | |
| − | < | + | <cmath>\begin{align*}&a\in\{0,3,6\} \text{ (} 3 \text{ possibilities),} \\ |
| + | &b\in\{0,3\} \text{ (} 2 \text{ possibilities),} \\ | ||
| + | &c\in\{0\} \text{ (} 1 \text{ possibility), and} \\ | ||
| + | &d\in\{0\} \text{ (} 1 \text{ possibility),}\end{align*}</cmath> | ||
| − | <math> | + | so the number of perfect cubes that divide <math>3! \cdot 5! \cdot 7!</math> is <math>3\cdot2\cdot1\cdot1 = \boxed{\textbf{(E) } 6}</math>. |
| − | <math> | + | ==Solution 2== |
| + | As in Solution 1, we write <math>3! \cdot 5! \cdot 7! = (3\cdot2\cdot1) \cdot (5\cdot4\cdot3\cdot2\cdot1) \cdot (7\cdot6\cdot5\cdot4\cdot3\cdot2\cdot1)</math>, and now notice that there are a total of <math>3</math> <math>3</math>s, <math>3</math> <math>2</math>s, and <math>3</math> <math>1</math>s. This gives us our first <math>3</math> cubes: <math>3^3</math>, <math>2^3</math>, and <math>1^3</math>. | ||
| − | <math> | + | However, we can also multiply smaller numbers in the expression to make bigger cubes. For example, <math>(2 \cdot 2) \cdot 4 \cdot 4 = 4 \cdot 4 \cdot 4 = 4^3</math> (where one 2 comes from the <math>3!</math>, and the other from the <math>5!</math>). Using this method, we can also make |
| + | <cmath>(3 \cdot 2) \cdot (3 \cdot 2) \cdot 6 = 6^3</cmath> | ||
| − | + | and | |
| − | + | <cmath>(3 \cdot 4) \cdot (3 \cdot 4) \cdot (2 \cdot 6) = 12^3.</cmath> | |
| − | + | So we have <math>6</math> possible cubes in total: <math>1^3</math>, <math>2^3</math>, <math>3^3</math>, <math>4^3</math>, <math>6^3</math>, and <math>12^3</math>, and the answer is <math>\boxed{\textbf{(E) } 6}</math>. | |
| − | + | ==See also== | |
| + | {{AMC10 box|year=2005|ab=A|num-b=14|num-a=16}} | ||
| − | + | [[Category:Introductory Number Theory Problems]] | |
| − | + | [[Category:Introductory Combinatorics Problems]] | |
| − | + | [[Category:Introductory Number Theory Problems]] | |
| − | + | {{MAA Notice}} | |
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
| − | |||
Latest revision as of 16:52, 1 July 2025
Contents
Problem
How many positive cubes divide
?
Solution 1
We obtain
.
Therefore, a perfect cube that divides
must be of the form
, where
,
,
, and
are non-negative multiples of
that are less than or equal to
,
,
and
respectively.
This means
so the number of perfect cubes that divide
is
.
Solution 2
As in Solution 1, we write
, and now notice that there are a total of
s,
s, and
s. This gives us our first
cubes:
,
, and
.
However, we can also multiply smaller numbers in the expression to make bigger cubes. For example,
(where one 2 comes from the
, and the other from the
). Using this method, we can also make
and
So we have
possible cubes in total:
,
,
,
,
, and
, and the answer is
.
See also
| 2005 AMC 10A (Problems • Answer Key • Resources) | ||
| Preceded by Problem 14 |
Followed by Problem 16 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AMC 10 Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.