Difference between revisions of "1984 AHSME Problems/Problem 22"

(Created page with "==Problem== Let <math> a </math> and <math> c </math> be fixed positive numbers. For each real number <math> t </math> let <math> (x_t, y_t) </math> be th...")
 
(Solution)
 
(3 intermediate revisions by 2 users not shown)
Line 1: Line 1:
 
==Problem==
 
==Problem==
Let <math> a </math> and <math> c </math> be fixed [[Natural numbers|positive numbers]]. For each [[real number]] <math> t </math> let <math> (x_t, y_t) </math> be the [[vertex]] of the [[parabola]] <math> y=ax^2+bx+c </math>. If the set of the vertices <math> (x_t, y_t) </math> for all real numbers of <math> t </math> is graphed on the [[Cartesian plane|plane]], the [[graph]] is
+
Let <math> a </math> and <math> c </math> be fixed [[Natural numbers|positive numbers]]. For each [[real number]] <math> t </math> let <math> (x_t, y_t) </math> be the [[vertex]] of the [[parabola]] <math> y=ax^2+tx+c </math>. If the set of the vertices <math> (x_t, y_t) </math> for all real numbers of <math> t </math> is graphed on the [[Cartesian plane|plane]], the [[graph]] is
  
 
<math> \mathrm{(A) \ } \text{a straight line} \qquad \mathrm{(B) \ } \text{a parabola} \qquad \mathrm{(C) \ } \text{part, but not all, of a parabola} \qquad \mathrm{(D) \ } \text{one branch of a hyperbola} \qquad </math> <math> \mathrm{(E) \ } \text{None of these} </math>
 
<math> \mathrm{(A) \ } \text{a straight line} \qquad \mathrm{(B) \ } \text{a parabola} \qquad \mathrm{(C) \ } \text{part, but not all, of a parabola} \qquad \mathrm{(D) \ } \text{one branch of a hyperbola} \qquad </math> <math> \mathrm{(E) \ } \text{None of these} </math>
  
 
==Solution==
 
==Solution==
The x-coordinate of the vertex of a parabola is <math> -\frac{b}{2a} </math>, so <math> x_t=-\frac{b}{2a} </math>. Plugging this into <math> y=ax^2+bx+c </math> yields <math> y=-\frac{b^2}{4a^2}+c </math>, so <math> y_t=-\frac{b^2}{4a^2}+c </math>. Notice that <math> y_t=-\frac{b^2}{4a^2}+c=-a(-\frac{b}{2a})^2+c=-ax_t^2+c </math>, so all of the vertices are on a parabola. However, we have only showed that all of the points in the locus of vertices are on a parabola, we have not shown whether or not all points on the parabola are on the locus. Assume we are given an <math> x_t </math> on the parabola. <math> -\frac{b}{2a}=x_t </math>, <math> b=-2ax_t </math>, so a unique <math> b </math>, and therefore a unique vertex, is determined for each point on the parabola. We therefore conclude that every point in the locus is on the parabola and every point on the parabola is in the locus, and the graph of the locus is the same as the graph of the parabola, <math> \boxed{\text{B}} </math>.
+
The <math>x</math>-coordinate of the vertex of the parabola <math>ax^2 + tx + c</math> is <math> -\frac{t}{2a} </math>, so <math> x_t=-\frac{t}{2a} </math>. Substituting yields <math>y_t=-\frac{t^2}{4a^2}+c </math>. Notice that <math> y_t=-\frac{t^2}{4a^2}+c=-a(-\frac{t}{2a})^2+c=-ax_t^2+c </math>, so all of the vertices are on a parabola. However, we have only showed that all of the points in the locus of vertices are on a parabola, we have not shown whether or not all points on the parabola are on the locus. Assume we are given an <math> x_t </math> on the parabola. <math> -\frac{t}{2a}=x_t </math>, <math>t = -2ax_t </math>, so a unique <math> t </math>, and therefore a unique vertex, is determined for each point on the parabola. We therefore conclude that every point in the locus is on the parabola and every point on the parabola is in the locus, and the graph of the locus is the same as the graph of the parabola, <math> \boxed{\text{B}} </math>.
  
 
==See Also==
 
==See Also==
 
{{AHSME box|year=1984|num-b=21|num-a=23}}
 
{{AHSME box|year=1984|num-b=21|num-a=23}}
 +
{{MAA Notice}}

Latest revision as of 20:55, 3 July 2025

Problem

Let $a$ and $c$ be fixed positive numbers. For each real number $t$ let $(x_t, y_t)$ be the vertex of the parabola $y=ax^2+tx+c$. If the set of the vertices $(x_t, y_t)$ for all real numbers of $t$ is graphed on the plane, the graph is

$\mathrm{(A) \ } \text{a straight line} \qquad \mathrm{(B) \ } \text{a parabola} \qquad \mathrm{(C) \ } \text{part, but not all, of a parabola} \qquad \mathrm{(D) \ } \text{one branch of a hyperbola} \qquad$ $\mathrm{(E) \ } \text{None of these}$

Solution

The $x$-coordinate of the vertex of the parabola $ax^2 + tx + c$ is $-\frac{t}{2a}$, so $x_t=-\frac{t}{2a}$. Substituting yields $y_t=-\frac{t^2}{4a^2}+c$. Notice that $y_t=-\frac{t^2}{4a^2}+c=-a(-\frac{t}{2a})^2+c=-ax_t^2+c$, so all of the vertices are on a parabola. However, we have only showed that all of the points in the locus of vertices are on a parabola, we have not shown whether or not all points on the parabola are on the locus. Assume we are given an $x_t$ on the parabola. $-\frac{t}{2a}=x_t$, $t = -2ax_t$, so a unique $t$, and therefore a unique vertex, is determined for each point on the parabola. We therefore conclude that every point in the locus is on the parabola and every point on the parabola is in the locus, and the graph of the locus is the same as the graph of the parabola, $\boxed{\text{B}}$.

See Also

1984 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 21
Followed by
Problem 23
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC Logo.png