Difference between revisions of "2008 AMC 10A Problems/Problem 20"
I like pie (talk | contribs) m |
(solution) |
||
| Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
| − | Trapezoid <math>ABCD</math> has bases <math>\overline{AB}</math> and <math>\overline{CD}</math> and diagonals intersecting at <math>K</math>. Suppose that <math>AB = 9</math>, <math>DC = 12</math>, and the area of <math>\triangle AKD</math> is <math>24</math>. What is the area of trapezoid <math>ABCD</math>? | + | [[Trapezoid]] <math>ABCD</math> has bases <math>\overline{AB}</math> and <math>\overline{CD}</math> and diagonals intersecting at <math>K</math>. Suppose that <math>AB = 9</math>, <math>DC = 12</math>, and the area of <math>\triangle AKD</math> is <math>24</math>. What is the area of trapezoid <math>ABCD</math>? |
<math>\mathrm{(A)}\ 92\qquad\mathrm{(B)}\ 94\qquad\mathrm{(C)}\ 96\qquad\mathrm{(D)}\ 98 \qquad\mathrm{(E)}\ 100</math> | <math>\mathrm{(A)}\ 92\qquad\mathrm{(B)}\ 94\qquad\mathrm{(C)}\ 96\qquad\mathrm{(D)}\ 98 \qquad\mathrm{(E)}\ 100</math> | ||
==Solution== | ==Solution== | ||
| − | {{ | + | <center><asy> |
| + | pointpen = black; pathpen = black + linewidth(0.62); /* cse5 */ | ||
| + | pen sm = fontsize(10); /* small font pen */ | ||
| + | pair D=(0,0),C=(12,0), K=(7,16/3); /* note that K.x is arbitrary, as generator for A,B */ | ||
| + | pair A=7*K/4-3*C/4, B=7*K/4-3*D/4; | ||
| + | D(MP("A",A,N)--MP("B",B,N)--MP("C",C)--MP("D",D)--A--C);D(B--D);D(A--MP("K",K)--D--cycle,linewidth(0.7)); | ||
| + | MP("9",(A+B)/2,N,sm);MP("12",(C+D)/2,sm);MP("24",(A+D)/2+(1,0),E); | ||
| + | </asy></center> | ||
| + | Since <math>\overline{AB} \parallel \overline{DC}</math> it follows that <math>\triangle ABK \sim \triangle CDK</math>. Thus <math>\frac{KA}{KC} = \frac{KB}{KD} = \frac{AB}{DC} = \frac{3}{4}</math>. | ||
| + | |||
| + | We now introduce the concept of [[area ratios]]: given two triangles that share the same height, the ratio of the areas is equal to the ratio of their bases. Since <math>\triangle AKB, \triangle AKD</math> share a common [[altitude]] to <math>\overline{BD}</math>, it follows that (we let <math>[\triangle \ldots]</math> denote the area of the triangle) <math>\frac{[\triangle AKB]}{[\triangle AKD]} = \frac{KB}{KD} = \frac{3}{4}</math>, so <math>[\triangle AKB] = \frac{3}{4}(24) = 18</math>. Similarly, we find <math>[\triangle DKC] = \frac{4}{3}(24) = 32</math> and <math>[\triangle BKC] = 24</math>. | ||
| + | |||
| + | Therefore, the area of <math>ABCD = [AKD] + [AKB] + [BKC] + [CKD] = 24 + 18 + 24 + 32 = 98\ \mathrm{(D)}</math>. | ||
==See also== | ==See also== | ||
Revision as of 10:08, 25 April 2008
Problem
Trapezoid
has bases
and
and diagonals intersecting at
. Suppose that
,
, and the area of
is
. What is the area of trapezoid
?
Solution
![[asy] pointpen = black; pathpen = black + linewidth(0.62); /* cse5 */ pen sm = fontsize(10); /* small font pen */ pair D=(0,0),C=(12,0), K=(7,16/3); /* note that K.x is arbitrary, as generator for A,B */ pair A=7*K/4-3*C/4, B=7*K/4-3*D/4; D(MP("A",A,N)--MP("B",B,N)--MP("C",C)--MP("D",D)--A--C);D(B--D);D(A--MP("K",K)--D--cycle,linewidth(0.7)); MP("9",(A+B)/2,N,sm);MP("12",(C+D)/2,sm);MP("24",(A+D)/2+(1,0),E); [/asy]](http://latex.artofproblemsolving.com/a/8/5/a8512170c7bb9c8c44a4195790890290d8352b64.png)
Since
it follows that
. Thus
.
We now introduce the concept of area ratios: given two triangles that share the same height, the ratio of the areas is equal to the ratio of their bases. Since
share a common altitude to
, it follows that (we let
denote the area of the triangle)
, so
. Similarly, we find
and
.
Therefore, the area of
.
See also
| 2008 AMC 10A (Problems • Answer Key • Resources) | ||
| Preceded by Problem 19 |
Followed by Problem 21 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AMC 10 Problems and Solutions | ||