Difference between revisions of "2024 AMC 12B Problems/Problem 19"
(→Solution 1) |
|||
(13 intermediate revisions by 6 users not shown) | |||
Line 16: | Line 16: | ||
Easily get <math>OF = \frac{14\sqrt{3}}{3}</math> | Easily get <math>OF = \frac{14\sqrt{3}}{3}</math> | ||
− | <math>2 \cdot \triangle(OFC) + \triangle(OCE) = OF^2 \cdot \sin(\theta) + OF^2 \cdot \sin(120 - \theta)</math> | + | <math>2 \cdot (\triangle(OFC) + \triangle(OCE)) = OF^2 \cdot \sin(\theta) + OF^2 \cdot \sin(120 - \theta)</math> |
<cmath> = \frac{14^2 \cdot 3}{9} ( \sin(\theta) + \sin(120 - \theta) ) </cmath> | <cmath> = \frac{14^2 \cdot 3}{9} ( \sin(\theta) + \sin(120 - \theta) ) </cmath> | ||
<cmath> = \frac{196}{3} ( \sin(\theta) + \sin(120 - \theta) ) </cmath> | <cmath> = \frac{196}{3} ( \sin(\theta) + \sin(120 - \theta) ) </cmath> | ||
Line 25: | Line 25: | ||
<cmath> \sqrt{3} \sin( \theta) + \cos( \theta) = \frac{13 }{7} </cmath> | <cmath> \sqrt{3} \sin( \theta) + \cos( \theta) = \frac{13 }{7} </cmath> | ||
<cmath> \cos( \theta) = \frac{13 }{7} - \sqrt{3} \sin( \theta) </cmath> | <cmath> \cos( \theta) = \frac{13 }{7} - \sqrt{3} \sin( \theta) </cmath> | ||
− | <cmath> \frac{169 }{49} - \frac{26\sqrt{3} }{7} \sin( \theta) + 4 \sin( \theta)^2 = | + | <cmath> \frac{169 }{49} - \frac{26\sqrt{3} }{7} \sin( \theta) + 4 \sin( \theta)^2 = 1 </cmath> |
<cmath> \sin( \theta) = \frac{5\sqrt{3} }{14} or \frac{4\sqrt{3} }{7} </cmath> | <cmath> \sin( \theta) = \frac{5\sqrt{3} }{14} or \frac{4\sqrt{3} }{7} </cmath> | ||
<math>\frac{4\sqrt{3} }{7} </math> is invalid given <math>\theta \leq 60^\circ </math> , <math>\sin(\theta ) < \sin( 60^\circ ) = \frac{\sqrt{3} }{2} = \frac{\sqrt{3} \cdot 3.5}{7} </math> | <math>\frac{4\sqrt{3} }{7} </math> is invalid given <math>\theta \leq 60^\circ </math> , <math>\sin(\theta ) < \sin( 60^\circ ) = \frac{\sqrt{3} }{2} = \frac{\sqrt{3} \cdot 3.5}{7} </math> | ||
Line 33: | Line 33: | ||
~[https://artofproblemsolving.com/wiki/index.php/User:Cyantist luckuso] | ~[https://artofproblemsolving.com/wiki/index.php/User:Cyantist luckuso] | ||
− | ==Solution | + | ==Solution 2== |
− | From <math>\triangle ABC</math>'s side lengths of 14, we get OF = OC = OE = | + | From <math>\triangle ABC</math>'s side lengths of 14, we get |
− | We let angle FOC = | + | <cmath>OF = OC = OE = \frac{14\sqrt{3}}{3}.</cmath> |
− | And | + | We let <math>\angle FOC = \theta</math> |
+ | And <math>\angle EOC = 120 - \theta</math> | ||
− | The answer would be | + | The answer would be <math>3([\triangle FOC] + [\triangle COE])</math> |
− | Which area <math>\triangle FOC</math> = | + | Which area <math>\triangle FOC</math> = <math>\frac{1}{2}\left(\frac{14\sqrt{3}}{3}\right)^2 \sin(\theta)</math> |
− | And area <math>\triangle COE</math> = | + | And area <math>\triangle COE</math> = <math>\frac{1}{2}\left(\frac{14\sqrt{3}}{3}\right)^2 \sin(120 - \theta)</math> |
− | + | So we have that | |
− | 3 | + | <cmath>3\cdot \frac{1}{2}\cdot \left(\frac{14\sqrt{3}}{3}\right)^2 (\sin(\theta)+\sin(120 - \theta)) = 91\sqrt{3}</cmath> |
− | Which <cmath> sin(\theta)+sin(120 - \theta) = \frac{91\sqrt{3}}{98} </cmath> | + | Which means |
+ | <cmath>\sin(\theta)+\sin(120 - \theta) = \frac{91\sqrt{3}}{98}</cmath> | ||
+ | <cmath>\frac{1}{2}\cos(\theta)+\frac{\sqrt{3}}{2}\sin(\theta) = \frac{91}{98}</cmath> | ||
+ | <cmath>\sin(\theta + 30) = \frac{91}{98}</cmath> | ||
+ | <cmath>\cos (\theta + 30) = \frac{21\sqrt{3}}{98}</cmath> | ||
+ | <cmath>\tan(\theta + 30) = \frac{91}{21\sqrt{3}} = \frac{91\sqrt{3}}{63}</cmath> | ||
− | + | Now, <math>\tan(\theta)</math> can be calculated using the addition identity, which gives the answer of | |
− | + | <cmath>\boxed{\text{(B) }\frac{5\sqrt{3}}{11}}.</cmath> | |
− | + | ~mitsuihisashi14 | |
+ | ~[https://artofproblemsolving.com/wiki/index.php/User:Cyantist luckuso] (fixed Latex error ) | ||
+ | |||
+ | ==Solution 3 (No Trig Manipulations)== | ||
+ | |||
+ | <asy> | ||
+ | // Modified Asymptote diagram with correct right angle mark and alpha label. | ||
+ | |||
+ | import olympiad; | ||
+ | defaultpen(fontsize(13)); | ||
+ | size(200); | ||
+ | |||
+ | // Circumradius R = 14*sqrt(3)/3 | ||
+ | real R = 14*sqrt(3)/3; | ||
+ | |||
+ | // Define original points with scaling | ||
+ | pair O = (0,0); | ||
+ | pair A = R * dir(225); | ||
+ | pair B = R * dir(-15); | ||
+ | pair C = R * dir(105); | ||
+ | pair D = rotate(38.21, O) * A; | ||
+ | pair E = rotate(38.21, O) * B; | ||
+ | pair F = rotate(38.21, O) * C; | ||
− | + | // Point H: Foot of altitude from B to DE | |
+ | pair DE_vec = E - D; | ||
+ | pair perp_DE = (DE_vec.y, -DE_vec.x); // Rotate -90 degrees | ||
+ | perp_DE = perp_DE / length(perp_DE); // Unit vector | ||
+ | pair H = B - (2*sqrt(3)) * perp_DE; // Corrected direction | ||
− | + | // Point M: Extend BH to M, BM = 13*sqrt(3)/3 | |
+ | pair BH_vec = H - B; | ||
+ | pair BM_unit = BH_vec / length(BH_vec); // Unit vector along BH | ||
+ | pair M = B + (13*sqrt(3)/3) * BM_unit; // BM = 13*sqrt(3)/3 | ||
− | + | // Point P: Midpoint of BE | |
+ | pair P = (B + E) / 2; | ||
− | ( | + | // Draw original triangles and polygon |
+ | draw(A--B--C--A, gray+0.4); | ||
+ | draw(D--E--F--D, gray+0.4); | ||
+ | draw(A--D--B--E--C--F--A, black+0.9); | ||
− | + | // Draw new dashed segments | |
− | + | draw(B--H, black+0.7+dashed); | |
+ | draw(H--M, black+0.7+dashed); | ||
+ | draw(O--M, black+0.7+dashed); | ||
+ | draw(O--P, black+0.7+dashed); | ||
+ | draw(P--E, black+0.7+dashed); | ||
+ | draw(O--B, black+0.7+dashed); | ||
+ | |||
+ | // Draw right angle marker at OMB | ||
+ | draw(rightanglemark(B, M, O, 15)); // Right angle at M, size 15 | ||
+ | |||
+ | // Draw dots and labels | ||
+ | dot(O); | ||
+ | dot("$O$", O, dir(180)); | ||
+ | dot("$A$", A, dir(A)); | ||
+ | dot("$B$", B, dir(B)); | ||
+ | dot("$C$", C, dir(C)); | ||
+ | dot("$D$", D, dir(D)); | ||
+ | dot("$E$", E, dir(E)); | ||
+ | dot("$F$", F, dir(F)); | ||
+ | dot("$H$", H, dir(270)); | ||
+ | dot("$M$", M, dir(90)); | ||
+ | dot("$P$", P, dir(0)); | ||
+ | |||
+ | // Label angle POB as alpha, to the right of O | ||
+ | draw(anglemark(B, O, P, 50)); // Angle mark at O | ||
+ | label("$\alpha$", O + (1.5, -.23), dir(0)); // Position to the right of O | ||
+ | </asy> | ||
+ | |||
+ | Let the circumcenter of the circle inscribing this polygon be <math>O</math>. The area of the equilateral triangle is <math>\frac{\sqrt{3}}{4}*196=49\sqrt{3}</math>. The area of one of the three smaller triangles, say <math>\triangle{DBE}</math> is <math>14\sqrt{3}</math>. Let <math>BH</math> be the altitude of <math>\triangle{DBE}</math>, so if we extend <math>BH</math> to point <math>M</math> where <math>MO\perp{BM}</math>, we get right triangle <math>\triangle{OMB}</math>. Note that the height <math>BH=2\sqrt{3}</math>, computed given the area and side length <math>14</math>, so <math>MB=MH+HB=\frac{7\sqrt{3}}{3}+2\sqrt{3}=\frac{13\sqrt{3}}{3}</math>. <math>OB=\frac{14\sqrt{3}}{3}</math> so Pythag gives <math>OM=\sqrt{OB^2-MB^2}=3</math>. This means that <math>HE=7-OM=4</math>, so Pythag gives <math>BE=2\sqrt{7}</math>. Let <math>\frac{\theta}{2}=\alpha</math> and the midpoint of <math>BE</math> be <math>P</math> so that <math>BP=PE=\sqrt{7}</math>, so that Pythag on <math>\triangle{OPE}</math> gives <math>OP=\sqrt{OE^2-PE^2}=\sqrt{\frac{175}{3}}</math>. Then <math>\tan{\alpha}=\frac{\sqrt{7}}{\sqrt{\frac{175}{3}}}=\frac{\sqrt{3}}{5}</math>. Then <math>\tan{2\alpha}=\tan{\theta}=\frac{\frac{2\sqrt{3}}{5}}{1-\frac{3}{25}}=\boxed{\frac{5\sqrt{3}}{11}}</math>. | ||
+ | |||
+ | -Magnetoninja | ||
+ | |||
+ | ==Solution 4== | ||
+ | <cmath>[\triangle ABD] = \frac{[ADBECF]-[\triangle ABC]}{3} = \frac{91\sqrt{3}-49\sqrt{3}}{3} = 14\sqrt{3}</cmath> | ||
+ | |||
+ | Let <math>M</math> be the intersection of <math>AB</math> and <math>DE</math>. Since <math>DMB</math> is isosceles and <math>\angle AMD = \theta</math>, we have <math>\angle ABD = \theta/2</math>. Also, all of the hexagon's internal angles are equal, so <math>\angle ADB = 120^\circ</math>. | ||
+ | <asy> | ||
+ | defaultpen(fontsize(13)); | ||
+ | size(220); | ||
+ | |||
+ | // Base points and rotation | ||
+ | pair O = (0,0); | ||
+ | pair A = dir(225); | ||
+ | pair B = dir(-15); | ||
+ | pair D = rotate(38.21, O)*A; | ||
+ | pair E = rotate(38.21, O)*B; | ||
+ | |||
+ | // Intersection point of AB and DE | ||
+ | pair M = extension(A, B, D, E); | ||
+ | |||
+ | // Triangle and segments | ||
+ | defaultpen(fontsize(13)); | ||
+ | size(220); | ||
+ | |||
+ | // Base triangle from rotated figure | ||
+ | pair O = (0,0); | ||
+ | pair A = dir(225); | ||
+ | pair B = dir(-15); | ||
+ | pair D = rotate(38.21, O)*A; | ||
+ | pair E = rotate(38.21, O)*B; | ||
+ | |||
+ | // M is intersection of AB and DE | ||
+ | pair M = extension(A, B, D, E); | ||
+ | |||
+ | // Draw triangle and segment | ||
+ | draw(A--B--D--cycle, black+0.9); | ||
+ | draw(D--M, gray + dashed); | ||
+ | |||
+ | // Draw angle theta at AMD | ||
+ | real r = 0.1; | ||
+ | path thetaArc = arc(M, r, degrees(D - M), degrees(A - M)); | ||
+ | draw(thetaArc, gray); | ||
+ | label("$\theta$", M + (r+0.1)*dir((degrees(D - M) + degrees(A - M))/2), gray); | ||
+ | |||
+ | // Draw congruence ticks on MB and MD | ||
+ | pair u1 = unit(B - M), u2 = unit(D - M); | ||
+ | pair tick1a = midpoint(M--B) + rotate(90)*u1 * 0.04; | ||
+ | pair tick1b = midpoint(M--B) + rotate(-90)*u1 * 0.04; | ||
+ | pair tick2a = midpoint(M--D) + rotate(90)*u2 * 0.04; | ||
+ | pair tick2b = midpoint(M--D) + rotate(-90)*u2 * 0.04; | ||
+ | draw(tick1a--tick1b, gray); | ||
+ | draw(tick2a--tick2b, gray); | ||
+ | |||
+ | // Labels | ||
+ | dot("$A$", A, dir(A)); | ||
+ | dot("$B$", B, dir(B)); | ||
+ | dot("$D$", D, dir(D)); | ||
+ | dot("$M$", M, N); | ||
+ | </asy> | ||
+ | Using the side-angle-side area formula: | ||
+ | <cmath>14\sqrt{3} = \frac{1}{2} \cdot 14 \cdot BD \cdot \sin\left(\frac{\theta}{2}\right) \Rightarrow BD = \frac{2\sqrt{3}}{\sin(\theta/2)}.</cmath> | ||
+ | |||
+ | Apply Law of Sines on <math>\triangle ABD</math> with <math>\angle DAB = 60^\circ - \theta/2</math>: | ||
+ | <cmath>\frac{14}{\sin 120^\circ} = \frac{BD}{\sin(60^\circ - \theta/2)}</cmath> | ||
+ | <cmath>\frac{28}{\sqrt{3}} = \frac{2\sqrt{3}}{\sin(\theta/2)\sin(60^\circ - \theta/2)}.</cmath> | ||
+ | <cmath>\sin(\theta/2)\sin(60^\circ - \theta/2) = \frac{3}{14}.</cmath> | ||
+ | Using trig identities: | ||
+ | <cmath>\sqrt{\frac{1-\cos(\theta)}{2}} \cdot (\sin(60^\circ)\cos(\theta/2) - \sin(\theta/2)\cos(60^\circ)) = \frac{3}{14}</cmath> | ||
+ | <cmath>\sqrt{\frac{1-\cos(\theta)}{2}} \cdot \left(\frac{\sqrt{3}}{2}\cos(\theta/2) - \frac{1}{2}\sin(\theta/2)\right) = \frac{3}{14}</cmath> | ||
+ | <cmath>\sqrt{\frac{1-\cos(\theta)}{2}} \cdot \left(\frac{\sqrt{3}}{2} \sqrt{\frac{1+\cos(\theta)}{2}} - \frac{1}{2} \sqrt{\frac{1-\cos(\theta)}{2}} \right) = \frac{3}{14}</cmath> | ||
+ | <cmath>\left(\frac{\sqrt{3}}{2}\sqrt{\frac{1-\cos^2(\theta)}{4}} - \frac{1}{2}\left(\frac{1-\cos(\theta)}{2}\right)\right) = \frac{3}{14}</cmath> | ||
+ | <cmath>\frac{\sqrt{3}\sin\theta}{4} - \frac{(1-\cos\theta)}{4} = \frac{3}{14}</cmath> | ||
+ | <cmath>\sqrt{3}\sin\theta + \cos\theta = \frac{13}{7}</cmath> | ||
+ | <cmath>\cos\theta = \frac{13}{7} - \sqrt{3}\sin\theta.</cmath> | ||
+ | |||
+ | Substitute into <math>\sin^2\theta + \cos^2\theta = 1</math>: | ||
+ | <cmath>\left(\frac{13}{7} - \sqrt{3}\sin\theta\right)^2 + \sin^2\theta = 1.</cmath> | ||
+ | <cmath>4\sin^2\theta - \frac{26\sqrt{3}}{7}\sin\theta + \frac{120}{49} = 0.</cmath> | ||
+ | |||
+ | Solving: | ||
+ | <cmath>\sin\theta = \frac{5\sqrt{3}}{14} \quad (\text{valid root}), \quad \cos\theta = \frac{11}{14} \Rightarrow \tan\theta = \frac{5\sqrt{3}}{11}.</cmath> | ||
+ | |||
+ | <cmath>\boxed{\text{(B) }\frac{5\sqrt{3}}{11}}</cmath> | ||
+ | ~sparkycat | ||
+ | ==Video Solution by SpreadTheMathLove== | ||
+ | https://www.youtube.com/watch?v=akLlCXKtXnk | ||
==See also== | ==See also== | ||
{{AMC12 box|year=2024|ab=B|num-b=18|num-a=20}} | {{AMC12 box|year=2024|ab=B|num-b=18|num-a=20}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Latest revision as of 00:06, 23 July 2025
Contents
Problem 19
Equilateral with side length
is rotated about its center by angle
, where
, to form
. See the figure. The area of hexagon
is
. What is
?
Solution 1
Let O be circumcenter of the equilateral triangle
Easily get
is invalid given
,
Solution 2
From 's side lengths of 14, we get
We let
And
The answer would be
Which area =
And area =
So we have that
Which means
Now, can be calculated using the addition identity, which gives the answer of
~mitsuihisashi14 ~luckuso (fixed Latex error )
Solution 3 (No Trig Manipulations)
Let the circumcenter of the circle inscribing this polygon be . The area of the equilateral triangle is
. The area of one of the three smaller triangles, say
is
. Let
be the altitude of
, so if we extend
to point
where
, we get right triangle
. Note that the height
, computed given the area and side length
, so
.
so Pythag gives
. This means that
, so Pythag gives
. Let
and the midpoint of
be
so that
, so that Pythag on
gives
. Then
. Then
.
-Magnetoninja
Solution 4
Let be the intersection of
and
. Since
is isosceles and
, we have
. Also, all of the hexagon's internal angles are equal, so
.
Using the side-angle-side area formula:
Apply Law of Sines on with
:
Using trig identities:
Substitute into :
Solving:
~sparkycat
Video Solution by SpreadTheMathLove
https://www.youtube.com/watch?v=akLlCXKtXnk
See also
2024 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 18 |
Followed by Problem 20 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.