Difference between revisions of "1980 AHSME Problems/Problem 4"

(Created page with "==Problem== In the adjoining figure, CDE is an equilateral triangle and ABCD and DEFG are squares. The measure of <math>\angle GDA</math> is <math>\text{(A)} \ 90^\circ \qquad ...")
 
(Shrank diagram because it was huge.)
 
(4 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 
==Problem==
 
==Problem==
  
In the adjoining figure, CDE is an equilateral triangle and ABCD and DEFG are squares. The measure of <math>\angle GDA</math> is
+
In the adjoining figure, <math>CDE</math> is an equilateral triangle and <math>ABCD</math> and <math>DEFG</math> are squares. The measure of <math>\angle GDA</math> is
  
 
<math>\text{(A)} \ 90^\circ \qquad \text{(B)} \ 105^\circ \qquad \text{(C)} \ 120^\circ \qquad \text{(D)} \ 135^\circ \qquad \text{(E)} \ 150^\circ</math>
 
<math>\text{(A)} \ 90^\circ \qquad \text{(B)} \ 105^\circ \qquad \text{(C)} \ 120^\circ \qquad \text{(D)} \ 135^\circ \qquad \text{(E)} \ 150^\circ</math>
  
 
<asy>
 
<asy>
 +
size(225);
 
defaultpen(linewidth(0.7)+fontsize(10));
 
defaultpen(linewidth(0.7)+fontsize(10));
 
pair D=origin, C=D+dir(240), E=D+dir(300), F=E+dir(30), G=D+dir(30), A=D+dir(150), B=C+dir(150);
 
pair D=origin, C=D+dir(240), E=D+dir(300), F=E+dir(30), G=D+dir(30), A=D+dir(150), B=C+dir(150);
Line 17: Line 18:
 
label("$F$", F, dir(point--F));
 
label("$F$", F, dir(point--F));
 
label("$G$", G, dir(point--G));</asy>
 
label("$G$", G, dir(point--G));</asy>
 +
 +
== Solution ==
 +
 +
Since <math>ABCD</math> and <math>DEFG</math> are squares, <math>\angle ADC = \angle GDE = 90^\circ</math>.  Since <math>CDE</math> is equilateral, <math>\angle CDE = 60^\circ</math>.  So <math>\angle GDA=360^\circ-90^\circ-60^\circ-90^\circ= \boxed{(\textbf{C})\ 120^\circ} </math>.
 +
 +
== See also ==
 +
{{AHSME box|year=1980|num-b=3|num-a=5}}
 +
{{MAA Notice}}

Latest revision as of 02:05, 23 July 2025

Problem

In the adjoining figure, $CDE$ is an equilateral triangle and $ABCD$ and $DEFG$ are squares. The measure of $\angle GDA$ is

$\text{(A)} \ 90^\circ \qquad \text{(B)} \ 105^\circ \qquad \text{(C)} \ 120^\circ \qquad \text{(D)} \ 135^\circ \qquad \text{(E)} \ 150^\circ$

[asy] size(225); defaultpen(linewidth(0.7)+fontsize(10)); pair D=origin, C=D+dir(240), E=D+dir(300), F=E+dir(30), G=D+dir(30), A=D+dir(150), B=C+dir(150); draw(E--D--G--F--E--C--D--A--B--C); pair point=(0,0.5); label("$A$", A, dir(point--A)); label("$B$", B, dir(point--B)); label("$C$", C, dir(point--C)); label("$D$", D, dir(-15)); label("$E$", E, dir(point--E)); label("$F$", F, dir(point--F)); label("$G$", G, dir(point--G));[/asy]

Solution

Since $ABCD$ and $DEFG$ are squares, $\angle ADC = \angle GDE = 90^\circ$. Since $CDE$ is equilateral, $\angle CDE = 60^\circ$. So $\angle GDA=360^\circ-90^\circ-60^\circ-90^\circ= \boxed{(\textbf{C})\ 120^\circ}$.

See also

1980 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 3
Followed by
Problem 5
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC Logo.png