Difference between revisions of "2003 AMC 10A Problems/Problem 9"
(added problem and solution) |
(→Solution 3 (Lame?? lowkey L solution)) |
||
| (9 intermediate revisions by 8 users not shown) | |||
| Line 5: | Line 5: | ||
<math> \mathrm{(A) \ } \sqrt{x}\qquad \mathrm{(B) \ } \sqrt[3]{x^{2}}\qquad \mathrm{(C) \ } \sqrt[27]{x^{2}}\qquad \mathrm{(D) \ } \sqrt[54]{x}\qquad \mathrm{(E) \ } \sqrt[81]{x^{80}} </math> | <math> \mathrm{(A) \ } \sqrt{x}\qquad \mathrm{(B) \ } \sqrt[3]{x^{2}}\qquad \mathrm{(C) \ } \sqrt[27]{x^{2}}\qquad \mathrm{(D) \ } \sqrt[54]{x}\qquad \mathrm{(E) \ } \sqrt[81]{x^{80}} </math> | ||
| − | == Solution == | + | == Solution 1 == |
<math>\sqrt[3]{x\sqrt{x}}=\sqrt[3]{(\sqrt{x})^{2}\cdot\sqrt{x}}=\sqrt[3]{(\sqrt{x})^{3}}=\sqrt{x}</math>. | <math>\sqrt[3]{x\sqrt{x}}=\sqrt[3]{(\sqrt{x})^{2}\cdot\sqrt{x}}=\sqrt[3]{(\sqrt{x})^{3}}=\sqrt{x}</math>. | ||
Therefore: | Therefore: | ||
| − | <math>\sqrt[3]{x\sqrt[3]{x\sqrt[3]{x\sqrt{x}}}}=\sqrt[3]{x\sqrt[3]{x\sqrt{x}}}=\sqrt[3]{x\sqrt{x}}= \sqrt{x} \Rightarrow A</math> | + | <math>\sqrt[3]{x\sqrt[3]{x\sqrt[3]{x\sqrt{x}}}}=\sqrt[3]{x\sqrt[3]{x\sqrt{x}}}=\sqrt[3]{x\sqrt{x}}= \sqrt{x} \Rightarrow \boxed{\mathrm{(A)}\ \sqrt{x}}</math> |
| + | |||
| + | == Solution 2 == | ||
| + | We know that <math>\sqrt[3]{x\sqrt{x}} = \sqrt[3]{x\cdot(x^\frac{1}{2})} = \sqrt[3]{x^\frac{3}{2}} = x^\frac{1}{2}</math> We plug this into <math>\sqrt[3]{x\sqrt[3]{x\sqrt[3]{x\sqrt{x}}}}</math> and get <math>\sqrt[3]{x\sqrt[3]{x\cdot(x^\frac{1}{2})}}</math>. Again, we substitute and get <math>\sqrt[3]{x\cdot(x^\frac{1}{2})}</math>. We substitute one more time and get <math>x^\frac{1}{2} = \boxed{(A) \sqrt{x}}</math>. | ||
| + | |||
| + | ==Solution 3 (Lame??)== | ||
| + | WLOG, plug in some random square number like <math> 9 </math> or <math> 4 </math>, and the output you get after simplifying the expression will always be the square root of the number, so the answer is just <math> \boxed{(A) \sqrt{x}}</math>. | ||
| + | |||
| + | ~Darth_Cadet | ||
| + | |||
| + | ==Video Solution== | ||
| + | |||
| + | https://www.youtube.com/watch?v=8DMxo2pi1h8 ~David | ||
== See Also == | == See Also == | ||
| − | + | {{AMC10 box|year=2003|ab=A|num-b=8|num-a=10}} | |
| − | + | ||
| − | |||
[[Category:Introductory Algebra Problems]] | [[Category:Introductory Algebra Problems]] | ||
| + | {{MAA Notice}} | ||
Latest revision as of 22:24, 24 July 2025
Problem
Simplify
.
Solution 1
.
Therefore:
Solution 2
We know that
We plug this into
and get
. Again, we substitute and get
. We substitute one more time and get
.
Solution 3 (Lame??)
WLOG, plug in some random square number like
or
, and the output you get after simplifying the expression will always be the square root of the number, so the answer is just
.
~Darth_Cadet
Video Solution
https://www.youtube.com/watch?v=8DMxo2pi1h8 ~David
See Also
| 2003 AMC 10A (Problems • Answer Key • Resources) | ||
| Preceded by Problem 8 |
Followed by Problem 10 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AMC 10 Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.