Difference between revisions of "1989 AHSME Problems/Problem 29"

(Solution)
 
(One intermediate revision by one other user not shown)
Line 3: Line 3:
  
  
(A) <math>-2^{50}</math> (B) <math>-2^{49}</math> (C) 0 (D) <math>2^{49}</math> (E) <math>2^{50}</math>
+
<math> \textrm{(A)}\ -2^{50}\qquad\textrm{(B)}\ -2^{49}\qquad\textrm{(C)}\ 0\qquad\textrm{(D)}\ 2^{49}\qquad\textrm{(E)}\ 2^{50} </math>
  
 
==Solution==
 
==Solution==
Line 14: Line 14:
 
So, <math>Re[(1+i)^{99}]=\binom{99}{0}-\binom{99}{2}+\binom{99}{4}-\cdots -\binom{99}{98} = S</math>.  
 
So, <math>Re[(1+i)^{99}]=\binom{99}{0}-\binom{99}{2}+\binom{99}{4}-\cdots -\binom{99}{98} = S</math>.  
  
Using [[De Moivre's Theorem]], <math>(1+i)^{99}=[\sqrt{2}cis(45^\circ)]^{99}=\sqrt{2^{99}}\cdot cis(99\cdot45^\circ)=2^{49}\sqrt{2}\cdot cis(135^\circ) = -2^{49}+2^{49}i</math>.  
+
Using [[De Moivre's Theorem]], <math>(1+i)^{99}=[\sqrt{2}\mathrm{cis}(45^\circ)]^{99}=\sqrt{2^{99}}\cdot \mathrm{cis}(99\cdot45^\circ)=2^{49}\sqrt{2}\cdot \mathrm{cis}(135^\circ) = -2^{49}+2^{49}i</math>.  
  
 
And finally, <math>S=Re[-2^{49}+2^{49}i] = -2^{49}</math>.
 
And finally, <math>S=Re[-2^{49}+2^{49}i] = -2^{49}</math>.

Latest revision as of 13:32, 29 July 2025

Problem

What is the value of the sum $S=\sum_{k=0}^{49}(-1)^k\binom{99}{2k}=\binom{99}{0}-\binom{99}{2}+\binom{99}{4}-\cdots -\binom{99}{98}?$


$\textrm{(A)}\ -2^{50}\qquad\textrm{(B)}\ -2^{49}\qquad\textrm{(C)}\ 0\qquad\textrm{(D)}\ 2^{49}\qquad\textrm{(E)}\ 2^{50}$

Solution

By the Binomial Theorem, $(1+i)^{99}=\sum_{n=0}^{99}\binom{99}{j}i^n =$ $\binom{99}{0}i^0+\binom{99}{1}i^1+\binom{99}{2}i^2+\binom{99}{3}i^3+\binom{99}{4}i^4+\cdots +\binom{99}{98}i^{98}$.

Using the fact that $i^1=i$, $i^2=-1$, $i^3=-i$, $i^4=1$, and $i^{n+4}=i^n$, the sum becomes:

$(1+i)^{99}=\binom{99}{0}+\binom{99}{1}i-\binom{99}{2}-\binom{99}{3}i+\binom{99}{4}+\cdots -\binom{99}{98}$.

So, $Re[(1+i)^{99}]=\binom{99}{0}-\binom{99}{2}+\binom{99}{4}-\cdots -\binom{99}{98} = S$.

Using De Moivre's Theorem, $(1+i)^{99}=[\sqrt{2}\mathrm{cis}(45^\circ)]^{99}=\sqrt{2^{99}}\cdot \mathrm{cis}(99\cdot45^\circ)=2^{49}\sqrt{2}\cdot \mathrm{cis}(135^\circ) = -2^{49}+2^{49}i$.

And finally, $S=Re[-2^{49}+2^{49}i] = -2^{49}$.

$\fbox{B}$

See also

1989 AHSME (ProblemsAnswer KeyResources)
Preceded by
Problem 28
Followed by
Problem 30
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
All AHSME Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC Logo.png