Difference between revisions of "2021 AMC 12A Problems/Problem 22"
MRENTHUSIASM (talk | contribs) m (→Solution 2 (Complex Numbers: Trigonometric Identities)) |
MRENTHUSIASM (talk | contribs) (→Video Solution by MRENTHUSIASM (English & Chinese)) |
||
(19 intermediate revisions by 5 users not shown) | |||
Line 2: | Line 2: | ||
Suppose that the roots of the polynomial <math>P(x)=x^3+ax^2+bx+c</math> are <math>\cos \frac{2\pi}7,\cos \frac{4\pi}7,</math> and <math>\cos \frac{6\pi}7</math>, where angles are in radians. What is <math>abc</math>? | Suppose that the roots of the polynomial <math>P(x)=x^3+ax^2+bx+c</math> are <math>\cos \frac{2\pi}7,\cos \frac{4\pi}7,</math> and <math>\cos \frac{6\pi}7</math>, where angles are in radians. What is <math>abc</math>? | ||
− | <math>\textbf{(A) }-\frac{3}{49} \qquad \textbf{(B) }-\frac{1}{28} \qquad \textbf{(C) }\frac{\sqrt[3]7}{64} \qquad \textbf{(D) }\frac{1}{32}\qquad \textbf{(E) }\frac{1}{28}</math> | + | <math>\textbf{(A) }{-}\frac{3}{49} \qquad \textbf{(B) }{-}\frac{1}{28} \qquad \textbf{(C) }\frac{\sqrt[3]7}{64} \qquad \textbf{(D) }\frac{1}{32}\qquad \textbf{(E) }\frac{1}{28}</math> |
==Solution 1 (Complex Numbers: Vieta's Formulas)== | ==Solution 1 (Complex Numbers: Vieta's Formulas)== | ||
Line 33: | Line 33: | ||
\cos\frac{2\pi}{7}+\cos\frac{4\pi}{7}+\cos\frac{6\pi}{7}&=-\frac12. | \cos\frac{2\pi}{7}+\cos\frac{4\pi}{7}+\cos\frac{6\pi}{7}&=-\frac12. | ||
\end{align*}</cmath> | \end{align*}</cmath> | ||
− | Note that <math>\theta=\frac{2\pi}{7},\frac{4\pi}{7},\frac{6\pi}{7}</math> are roots of <cmath>\cos\theta+\cos(2\theta)+\cos(3\theta)=-\frac12, \hspace{15mm} (\bigstar)</cmath> as they can be verified either algebraically (by the identity <math>\cos\theta=\cos(-\theta)=\cos(2\pi-\theta) | + | Note that <math>\theta=\frac{2\pi}{7},\frac{4\pi}{7},\frac{6\pi}{7}</math> are roots of <cmath>\cos\theta+\cos(2\theta)+\cos(3\theta)=-\frac12, \hspace{15mm} (\bigstar)</cmath> as they can be verified either algebraically (by the identity <math>\cos\theta=\cos(-\theta)=\cos(2\pi-\theta)</math>) or geometrically (by the graph below). |
<asy> | <asy> | ||
/* Made by MRENTHUSIASM */ | /* Made by MRENTHUSIASM */ | ||
− | size( | + | size(200); |
− | |||
− | int | + | int xMin = -2; |
+ | int xMax = 2; | ||
+ | int yMin = -2; | ||
+ | int yMax = 2; | ||
int numRays = 24; | int numRays = 24; | ||
Line 48: | Line 50: | ||
for (int i = 1; i < big+1; ++i) | for (int i = 1; i < big+1; ++i) | ||
{ | { | ||
− | draw(Circle((0,0),i), gray+ linewidth(0.4)); | + | draw(Circle((0,0),i), gray+linewidth(0.4)); |
} | } | ||
for(int i=0;i<numRays;++i) | for(int i=0;i<numRays;++i) | ||
− | draw(rotate(i*360/numRays)*((-big,0)--(big,0)),gray+ linewidth(0.4)); | + | draw(rotate(i*360/numRays)*((-big,0)--(big,0)), gray+linewidth(0.4)); |
} | } | ||
− | polarGrid( | + | //Draws the horizontal gridlines |
− | + | void horizontalLines() | |
+ | { | ||
+ | for (int i = yMin+1; i < yMax; ++i) | ||
+ | { | ||
+ | draw((xMin,i)--(xMax,i), mediumgray+linewidth(0.4)); | ||
+ | } | ||
+ | } | ||
+ | |||
+ | //Draws the vertical gridlines | ||
+ | void verticalLines() | ||
+ | { | ||
+ | for (int i = xMin+1; i < xMax; ++i) | ||
+ | { | ||
+ | draw((i,yMin)--(i,yMax), mediumgray+linewidth(0.4)); | ||
+ | } | ||
+ | } | ||
+ | |||
+ | horizontalLines(); | ||
+ | verticalLines(); | ||
+ | polarGrid(xMax,numRays); | ||
+ | draw((xMin,0)--(xMax,0),black+linewidth(1.5),EndArrow(5)); | ||
+ | draw((0,yMin)--(0,yMax),black+linewidth(1.5),EndArrow(5)); | ||
+ | label("Re",(xMax,0),(2,0)); | ||
+ | label("Im",(0,yMax),(0,2)); | ||
//The n such that we're taking the nth roots of unity | //The n such that we're taking the nth roots of unity | ||
Line 74: | Line 99: | ||
for(int i = 0; i< n; ++i) dot(A[i],linewidth(3.5)); | for(int i = 0; i< n; ++i) dot(A[i],linewidth(3.5)); | ||
− | |||
− | |||
− | |||
− | |||
− | |||
</asy> | </asy> | ||
Let <math>x=\cos\theta.</math> It follows that | Let <math>x=\cos\theta.</math> It follows that | ||
Line 111: | Line 131: | ||
Therefore, we get <math>a = -\left(-\frac12\right) = \frac12.</math></li><p> | Therefore, we get <math>a = -\left(-\frac12\right) = \frac12.</math></li><p> | ||
<li>Solve for <math>b:</math> By Vieta's Formulas, we have <math>b = \cos \frac{2\pi}7 \cos \frac{4\pi}7 + \cos \frac{2\pi}7 \cos \frac{6\pi}7 + \cos \frac{4\pi}7 \cos \frac{6\pi}7.</math><p> | <li>Solve for <math>b:</math> By Vieta's Formulas, we have <math>b = \cos \frac{2\pi}7 \cos \frac{4\pi}7 + \cos \frac{2\pi}7 \cos \frac{6\pi}7 + \cos \frac{4\pi}7 \cos \frac{6\pi}7.</math><p> | ||
− | Note that <math>\cos \alpha \cos \beta = \frac{ \cos \left(\alpha + \beta\right) + \cos \left(\alpha - \beta\right) }{2}</math> for all <math>\alpha</math> and <math>\beta.</math> Therefore, we get <cmath>b=\frac{\cos \frac{6\pi}7 + \cos \frac{2\pi}7}2 + \frac{\cos \frac{ | + | Note that <math>\cos \alpha \cos \beta = \frac{ \cos \left(\alpha + \beta\right) + \cos \left(\alpha - \beta\right) }{2}</math> for all <math>\alpha</math> and <math>\beta.</math> Therefore, we get <cmath>b=\frac{\cos \frac{6\pi}7 + \cos \frac{2\pi}7}2 + \frac{\cos \frac{6\pi}7 + \cos \frac{4\pi}7}2 + \frac{\cos \frac{4\pi}7 + \cos \frac{2\pi}7}2=\cos \frac{2\pi}7 + \cos \frac{4\pi}7 + \cos \frac{6\pi}7=-\frac12.</cmath></li> |
− | <li>Solve for <math>c:</math> By Vieta's Formulas, we have <math>c = -\cos \frac{2\pi}7 \cos \frac{4\pi}7 \cos \frac{8\pi}7.</math> <p> | + | <li>Solve for <math>c:</math> By Vieta's Formulas, we have <math>c = -\cos \frac{2\pi}7 \cos \frac{4\pi}7 \cos \frac{6\pi}7=-\cos \frac{2\pi}7 \cos \frac{4\pi}7 \cos \frac{8\pi}7.</math> <p> |
We multiply both sides by <math>8 \sin{\frac{2\pi}{7}},</math> then repeatedly apply the angle addition formula for sine: | We multiply both sides by <math>8 \sin{\frac{2\pi}{7}},</math> then repeatedly apply the angle addition formula for sine: | ||
<cmath>\begin{align*} | <cmath>\begin{align*} | ||
Line 126: | Line 146: | ||
Finally, the answer is <math>abc=\frac12\cdot\left(-\frac12\right)\cdot\left(-\frac18\right)=\boxed{\textbf{(D) }\frac{1}{32}}.</math> | Finally, the answer is <math>abc=\frac12\cdot\left(-\frac12\right)\cdot\left(-\frac18\right)=\boxed{\textbf{(D) }\frac{1}{32}}.</math> | ||
− | ~Tucker | + | ~Tucker |
− | |||
− | |||
== Solution 4 (Product-to-Sum Identity) == | == Solution 4 (Product-to-Sum Identity) == | ||
− | Note sum of roots of unity equal zero, sum of real parts equal zero, and <math>\operatorname{Re}\left(\omega^{m}\right) = \operatorname{Re}\left(\omega^{-m}\right).</math> We have <cmath>\cos \frac{2 \pi}{7} + \cos \frac{4 \pi}{7} + \cos \frac{6 \pi}{7} = \frac12(0 - \cos 0) = -\frac12,</cmath> so <math>a = \frac{1}{2}.</math> | + | Note that the sum of the roots of unity equal zero, so the sum of their real parts equal zero, and <math>\operatorname{Re}\left(\omega^{m}\right) = \operatorname{Re}\left(\omega^{-m}\right).</math> We have <cmath>\cos \frac{2 \pi}{7} + \cos \frac{4 \pi}{7} + \cos \frac{6 \pi}{7} = \frac12(0 - \cos 0) = -\frac12,</cmath> so <math>a = \frac{1}{2}.</math> |
By the Product-to-Sum Identity, we have | By the Product-to-Sum Identity, we have | ||
Line 137: | Line 155: | ||
\cos \frac{2 \pi}{7} \cos \frac{4 \pi}{7} + \cos \frac{2 \pi}{7} \cos \frac{6 \pi}{7} + \cos \frac{4 \pi}{7} \cos \frac{6 \pi}{7} &= \frac{1}{2} \left(2 \cos \frac{2 \pi}{7} + \cos \frac{4 \pi}{7} + \cos \frac{6 \pi}{7} + \cos \frac{8 \pi}{7} + \cos \frac{10 \pi}{7}\right) \\ | \cos \frac{2 \pi}{7} \cos \frac{4 \pi}{7} + \cos \frac{2 \pi}{7} \cos \frac{6 \pi}{7} + \cos \frac{4 \pi}{7} \cos \frac{6 \pi}{7} &= \frac{1}{2} \left(2 \cos \frac{2 \pi}{7} + \cos \frac{4 \pi}{7} + \cos \frac{6 \pi}{7} + \cos \frac{8 \pi}{7} + \cos \frac{10 \pi}{7}\right) \\ | ||
&= \frac{1}{2}\left(2 \cos \frac{2 \pi}{7} + 2 \cos \frac{4 \pi}{7} + 2 \cos \frac{6 \pi}{7}\right) \\ | &= \frac{1}{2}\left(2 \cos \frac{2 \pi}{7} + 2 \cos \frac{4 \pi}{7} + 2 \cos \frac{6 \pi}{7}\right) \\ | ||
+ | &= \cos \frac{2 \pi}{7} + \cos \frac{4 \pi}{7} + \cos \frac{6 \pi}{7} \\ | ||
&= -\frac{1}{2}, | &= -\frac{1}{2}, | ||
\end{align*}</cmath> | \end{align*}</cmath> | ||
Line 152: | Line 171: | ||
Finally, we get <math>abc=\boxed{\textbf{(D) }\frac{1}{32}}.</math> | Finally, we get <math>abc=\boxed{\textbf{(D) }\frac{1}{32}}.</math> | ||
− | ~ ccx09 | + | ~ccx09 |
− | + | == Easy Video Solution by Scholars Foundation Without Complex Numbers and Euler's Identity (Using Trigonometry + Vieta's Formula) == | |
+ | |||
+ | https://youtu.be/m4N4KN6_tA0 | ||
− | == Solution | + | == Video Solution by OmegaLearn (Euler's Identity + Vieta's Formula) == |
− | + | https://youtu.be/Im_WTIK0tss | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | ~ pi_is_3.14 | |
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | + | == Video Solution by MRENTHUSIASM (English & Chinese) == | |
+ | https://youtu.be/X6oqEpFAJBk | ||
− | + | ~MRENTHUSIASM | |
− | + | ==Video Solution by [[User:grogg007|grogg007]]== | |
− | + | https://www.youtube.com/watch?v=hP4cpuAszLo | |
− | |||
− | |||
− | == Video Solution by | ||
− | https:// | ||
− | |||
− | |||
==See also== | ==See also== |
Latest revision as of 21:23, 3 August 2025
Contents
- 1 Problem
- 2 Solution 1 (Complex Numbers: Vieta's Formulas)
- 3 Solution 2 (Complex Numbers: Trigonometric Identities)
- 4 Solution 3 (Trigonometric Identities)
- 5 Solution 4 (Product-to-Sum Identity)
- 6 Easy Video Solution by Scholars Foundation Without Complex Numbers and Euler's Identity (Using Trigonometry + Vieta's Formula)
- 7 Video Solution by OmegaLearn (Euler's Identity + Vieta's Formula)
- 8 Video Solution by MRENTHUSIASM (English & Chinese)
- 9 Video Solution by grogg007
- 10 See also
Problem
Suppose that the roots of the polynomial are
and
, where angles are in radians. What is
?
Solution 1 (Complex Numbers: Vieta's Formulas)
Let Since
is a
th root of unity, we have
For all integers
note that
and
It follows that
By geometric series, we conclude that
Alternatively, recall that the
th roots of unity satisfy the equation
By Vieta's Formulas, the sum of these seven roots is
As a result, we get
Let
By Vieta's Formulas, the answer is
~MRENTHUSIASM (inspired by Peeyush Pandaya et al)
Solution 2 (Complex Numbers: Trigonometric Identities)
Let In Solution 1, we conclude that
so
Since
holds for all
this sum becomes
Note that
are roots of
as they can be verified either algebraically (by the identity
) or geometrically (by the graph below).
Let
It follows that
Rewriting
in terms of
we have
in which the roots are
Therefore, we obtain from which
~MRENTHUSIASM (inspired by Peeyush Pandaya et al)
Solution 3 (Trigonometric Identities)
We solve for and
separately:
- Solve for
By Vieta's Formulas, we have
The real parts of the
th roots of unity are
and they sum to
Note that
for all
Excluding
the other six roots add to
from which
Therefore, we get
- Solve for
By Vieta's Formulas, we have
Note that
for all
and
Therefore, we get
- Solve for
By Vieta's Formulas, we have
We multiply both sides by
then repeatedly apply the angle addition formula for sine:
Therefore, we get
Finally, the answer is
~Tucker
Solution 4 (Product-to-Sum Identity)
Note that the sum of the roots of unity equal zero, so the sum of their real parts equal zero, and We have
so
By the Product-to-Sum Identity, we have
so
By the Product-to-Sum Identity, we have
so
Finally, we get
~ccx09
Easy Video Solution by Scholars Foundation Without Complex Numbers and Euler's Identity (Using Trigonometry + Vieta's Formula)
Video Solution by OmegaLearn (Euler's Identity + Vieta's Formula)
~ pi_is_3.14
Video Solution by MRENTHUSIASM (English & Chinese)
~MRENTHUSIASM
Video Solution by grogg007
https://www.youtube.com/watch?v=hP4cpuAszLo
See also
2021 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 21 |
Followed by Problem 23 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.