Difference between revisions of "2024 AMC 12A Problems/Problem 19"
(→Solution 4 (Law of Cosines+Law of Sines+Trig Identities)) |
|||
(22 intermediate revisions by 12 users not shown) | |||
Line 5: | Line 5: | ||
==Solution 1== | ==Solution 1== | ||
+ | |||
+ | <asy> | ||
+ | import geometry; | ||
+ | |||
+ | size(200); | ||
+ | |||
+ | pair A = (-1.66, 0.33); | ||
+ | pair B = (-9.61277, 1.19799); | ||
+ | pair C = (-7.83974, 3.61798); | ||
+ | pair D = (-4.88713, 4.14911); | ||
+ | |||
+ | draw(circumcircle(A, B, C)); | ||
+ | |||
+ | draw(A--C); | ||
+ | draw(A--D); | ||
+ | draw(C--D); | ||
+ | draw(B--C); | ||
+ | draw(A--B); | ||
+ | |||
+ | label("$A$", A, E); | ||
+ | label("$B$", B, W); | ||
+ | label("$C$", C, NW); | ||
+ | label("$D$", D, N); | ||
+ | |||
+ | label("$7$", midpoint(A--C), SW); | ||
+ | label("$5$", midpoint(A--D), NE); | ||
+ | label("$3$", midpoint(C--D)+ dir(135)*0.3, N); | ||
+ | label("$3$", midpoint(B--C)+dir(180)*0.3, NW); | ||
+ | label("$8$", midpoint(A--B), S); | ||
+ | |||
+ | markangle(Label("$60^\circ$", Relative(0.5)), A, B, C, radius=10); | ||
+ | markangle(Label("$120^\circ$", Relative(0.5)), C, D, A, radius=10); | ||
+ | </asy> | ||
+ | ~diagram by erics118 | ||
+ | |||
First, <math>\angle CBA=60 ^\circ</math> by properties of cyclic quadrilaterals. | First, <math>\angle CBA=60 ^\circ</math> by properties of cyclic quadrilaterals. | ||
− | Let <math>AC=u</math>. | + | |
− | <cmath>u^2=3^2+5^2-2(3)(5)\cos120</cmath> | + | Let <math>AC=u</math>. Apply the [[Law of Cosines]] on <math>\triangle ACD</math>: |
+ | <cmath>u^2=3^2+5^2-2(3)(5)\cos120^\circ</cmath> | ||
<cmath>u=7</cmath> | <cmath>u=7</cmath> | ||
+ | |||
Let <math>AB=v</math>. Apply the Law of Cosines on <math>\triangle ABC</math>: | Let <math>AB=v</math>. Apply the Law of Cosines on <math>\triangle ABC</math>: | ||
− | <cmath>7^2=3^2+v^2-2(3)(v)\cos60</cmath> | + | <cmath>7^2=3^2+v^2-2(3)(v)\cos60^\circ</cmath> |
<cmath>v=\frac{3\pm13}{2}</cmath> | <cmath>v=\frac{3\pm13}{2}</cmath> | ||
<cmath>v=8</cmath> | <cmath>v=8</cmath> | ||
− | By Ptolemy’s Theorem, | + | |
+ | By [[Ptolemy’s Theorem]], | ||
<cmath>AB \cdot CD+AD \cdot BC=AC \cdot BD</cmath> | <cmath>AB \cdot CD+AD \cdot BC=AC \cdot BD</cmath> | ||
<cmath>8 \cdot 3+5 \cdot 3=7BD</cmath> | <cmath>8 \cdot 3+5 \cdot 3=7BD</cmath> | ||
<cmath>BD=\frac{39}{7}</cmath> | <cmath>BD=\frac{39}{7}</cmath> | ||
− | Since <math>\frac{39}{7}< | + | Since <math>\frac{39}{7}<7</math>, |
The answer is <math>\boxed{\textbf{(D) }\frac{39}{7}}</math>. | The answer is <math>\boxed{\textbf{(D) }\frac{39}{7}}</math>. | ||
− | |||
− | ==See | + | ~lptoggled,eevee9406, meh494 |
+ | |||
+ | ==Solution 2 (Law of Cosines + Law of Sines)== | ||
+ | Draw diagonals <math>AC</math> and <math>BD</math>. By Law of Cosines, | ||
+ | \begin{align*} | ||
+ | AC^2&=3^2 + 5^2 - 2(3)(5)\cos \left(\frac{2\pi}{3} \right) \\ | ||
+ | &= 9+25 +15 \\ | ||
+ | &=49. | ||
+ | \end{align*} | ||
+ | Since <math>AC</math> is positive, taking the square root gives <math>AC=7.</math> Let <math>\angle BDC=\angle CBD=x</math>. Since <math>\triangle BCD</math> is isosceles, we have <math>\angle BCD=180-2x</math>. Notice we can eventually solve <math>BD</math> using the Extended Law of Sines: <cmath>\frac{BD}{\sin(180-2x)}=2r,</cmath> where <math>r</math> is the radius of the circumcircle <math>ABCD</math>. Since <math>\sin(180-2x)=\sin(2x)=2\sin(x)\cos(x)</math>, we simply our equation: <cmath>\frac{BD}{2\sin(x)\cos(x)}=2r.</cmath> | ||
+ | Now we just have to find <math>\sin(x), \cos(x),</math> and <math>2r</math>. Since <math>ABCD</math> is cyclic, we have <math>\angle CBD = \angle CAD = x</math>. By Law of Cosines on <math>\triangle ADC</math>, we have <cmath>3^2=7^2 + 5^2 - 70\cos(x).</cmath> Thus, <math>\cos(x)=\frac{13}{14}.</math> Similarly, by Law of Sines on <math>\triangle ACD</math>, we have <cmath>\frac{7}{\sin\left(\frac{2\pi}{3} \right)}=2r.</cmath> Hence, <math>2r=\frac{14\sqrt3}{3}</math>. Now, using Law of Sines on <math>\triangle BCD</math>, we have <math>\frac{3}{\sin(x)}=2r= \frac{14\sqrt3}{3},</math> so <math>\sin(x)=\frac{3\sqrt3}{14}.</math> Therefore, <cmath>\frac{BD}{2\left(\frac{3\sqrt3}{14}\right) \left(\frac{13}{14} \right)}=\frac{14\sqrt3}{3}.</cmath> Solving, <math>BD = \frac{39}{7},</math> so the answer is <math>\boxed{\textbf{(D) }\frac{39}{7}}</math>. | ||
+ | |||
+ | ~evanhliu2009 | ||
+ | |||
+ | ==Solution 3 (Law of Cosines + Cyclic Quadrilateral Property)== | ||
+ | Draw diagonals <math>AC</math> and <math>BD</math>. First, use Law of Cosines to get that | ||
+ | \begin{align*} | ||
+ | AC^2&=3^2 + 5^2 - 2(3)(5)\cos(120^{\circ}) \\ | ||
+ | &= 9+25+15 \\ | ||
+ | &=49. | ||
+ | \end{align*} | ||
+ | Thus, <math>AC=7</math>. Since <math>ABCD</math> is cyclic, <math>\angle CAD = \angle CBD</math>, so Law of Cosines once again with respect to <math>\angle CAD</math> on triangle <math>ACD</math> leads to | ||
+ | \begin{align*} | ||
+ | 9&=5^2+7^2-2(7)(5)\cos\theta \\ | ||
+ | &= 74-70\cos\theta. \\ | ||
+ | \end{align*} | ||
+ | Solving yields <math>\cos\theta=\frac{13}{14}</math>. Finally, in <math>\triangle CBD</math>, we have <math>BD=6\cos\theta \implies \boxed{\textbf{(D) }\frac{39}{7}}</math>. | ||
+ | |||
+ | ~SirAppel | ||
+ | |||
+ | ==Solution 4 (Law of Cosines+Law of Sines+Trig Identities)== | ||
+ | |||
+ | Let <math>\angle BCA = x, \angle DCA = y</math>. If we know <math>\cos(x+y)</math> we can compute <math>BD</math>. Notice that <cmath>\cos(x+y)=\cos(x)\cos(y)-\sin(x)\sin(y)</cmath>. Now it remains to find all 4 terms in this equation. Applying Law of Cosines on triangle <math>ABC</math> to find <math>\cos(x)</math>, we find that <math>\cos(x)=-\frac{6}{42}=-\frac{1}{7}</math>. Similarly we find that <math>\cos(y)=\frac{11}{14}</math>. Now we compute <math>\sin(x)</math> and <math>\sin(y)</math>. Applying Law of Sines on triangle <math>ABC</math> we see that <math>\frac{\sin(x)}{8}=\frac{\sin(\frac{\pi}{3})}{7}</math>, or <math>\sin(x)=\frac{4\sqrt{3}}{7}</math>. Similarly <math>\sin(y)=\frac{5\sqrt{3}}{14}</math>. Now <math>\cos(x+y)=-\frac{71}{98}</math>. Let <math>BD=k</math>, we see that <math>k^2=3^2+3^2+2*3*3(\frac{71}{98})</math>. Solving for <math>k</math> yields <math>k=\frac{39}{7}</math>. | ||
+ | |||
+ | ~CreamyCream | ||
+ | |||
+ | ==Video Solution(Quick, fast, easy!)== | ||
+ | https://youtu.be/RQucKqjdNv8 | ||
+ | |||
+ | ~MC | ||
+ | |||
+ | ==Video Solution 1 by SpreadTheMathLove== | ||
+ | https://www.youtube.com/watch?v=f32mBtYTZp8 | ||
+ | |||
+ | == See Also == | ||
+ | |||
{{AMC12 box|year=2024|ab=A|num-b=18|num-a=20}} | {{AMC12 box|year=2024|ab=A|num-b=18|num-a=20}} | ||
{{MAA Notice}} | {{MAA Notice}} |
Latest revision as of 03:50, 14 August 2025
Contents
Problem
Cyclic quadrilateral has lengths
and
with
. What is the length of the shorter diagonal of
?
Solution 1
~diagram by erics118
First, by properties of cyclic quadrilaterals.
Let . Apply the Law of Cosines on
:
Let . Apply the Law of Cosines on
:
By Ptolemy’s Theorem,
Since
,
The answer is
.
~lptoggled,eevee9406, meh494
Solution 2 (Law of Cosines + Law of Sines)
Draw diagonals and
. By Law of Cosines,
\begin{align*}
AC^2&=3^2 + 5^2 - 2(3)(5)\cos \left(\frac{2\pi}{3} \right) \\
&= 9+25 +15 \\
&=49.
\end{align*}
Since
is positive, taking the square root gives
Let
. Since
is isosceles, we have
. Notice we can eventually solve
using the Extended Law of Sines:
where
is the radius of the circumcircle
. Since
, we simply our equation:
Now we just have to find
and
. Since
is cyclic, we have
. By Law of Cosines on
, we have
Thus,
Similarly, by Law of Sines on
, we have
Hence,
. Now, using Law of Sines on
, we have
so
Therefore,
Solving,
so the answer is
.
~evanhliu2009
Solution 3 (Law of Cosines + Cyclic Quadrilateral Property)
Draw diagonals and
. First, use Law of Cosines to get that
\begin{align*}
AC^2&=3^2 + 5^2 - 2(3)(5)\cos(120^{\circ}) \\
&= 9+25+15 \\
&=49.
\end{align*}
Thus,
. Since
is cyclic,
, so Law of Cosines once again with respect to
on triangle
leads to
\begin{align*}
9&=5^2+7^2-2(7)(5)\cos\theta \\
&= 74-70\cos\theta. \\
\end{align*}
Solving yields
. Finally, in
, we have
.
~SirAppel
Solution 4 (Law of Cosines+Law of Sines+Trig Identities)
Let . If we know
we can compute
. Notice that
. Now it remains to find all 4 terms in this equation. Applying Law of Cosines on triangle
to find
, we find that
. Similarly we find that
. Now we compute
and
. Applying Law of Sines on triangle
we see that
, or
. Similarly
. Now
. Let
, we see that
. Solving for
yields
.
~CreamyCream
Video Solution(Quick, fast, easy!)
~MC
Video Solution 1 by SpreadTheMathLove
https://www.youtube.com/watch?v=f32mBtYTZp8
See Also
2024 AMC 12A (Problems • Answer Key • Resources) | |
Preceded by Problem 18 |
Followed by Problem 20 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.