Difference between revisions of "2005 Alabama ARML TST Problems/Problem 14"
(→See also) |
(→Solution) |
||
(3 intermediate revisions by 3 users not shown) | |||
Line 3: | Line 3: | ||
==Solution== | ==Solution== | ||
− | <math>x^2-2y^2=1</math> means that <math>x</math> is odd. We can let <math>x=2x_1-1</math>: | + | ===Solution 1=== |
+ | <math>x^2-2y^2=1</math> means that <math>x</math> is odd. We can let <math>x=2x_1-1</math> for some <math>x_1>0</math>: | ||
<cmath>4x_1^2-4x_1-2y^2=0\Longrightarrow 2x_1^2-2x_1=y^2</cmath> | <cmath>4x_1^2-4x_1-2y^2=0\Longrightarrow 2x_1^2-2x_1=y^2</cmath> | ||
− | y is even, <math>y=2y_1</math>. | + | y is even, <math>y=2y_1</math> for some <math>y_1>0</math>. |
− | <cmath>2x_1^2-2x_1=4y_1^2\Longrightarrow x_1^2-x_1=x_1(x_1-1)= | + | <cmath>2x_1^2-2x_1=4y_1^2\Longrightarrow x_1^2-x_1=x_1(x_1-1)=2y_1^2</cmath> |
We need to find all integers <math>x_1</math> such that <math>x_1(x_1-1)</math> is twice a perfect square. | We need to find all integers <math>x_1</math> such that <math>x_1(x_1-1)</math> is twice a perfect square. | ||
− | Since <math>x_1</math> and <math>x_1-1</math> are relatively prime, | + | Since <math>x_1</math> and <math>x_1-1</math> are relatively prime, one of them is a perfect square and the other is twice a perfect square. Moreover, the perfect square must be odd. |
− | + | We will now find four smallest solutions for <math>x_1</math>. Obviously, these will give the four smallest solutions for <math>x+y</math>. | |
− | <math>x_1 | + | Each time we examine whether the value <math>y_1=\sqrt{\frac{x_1(x_1-1)}2}</math> is a positive integer. |
− | <math>x_1=289</math> | + | * <math>x_1=1</math> gives <math>y_1=0</math> which is not positive. |
+ | * <math>x_1-1=1</math> gives <math>y_1=1</math>, hence <math>(x,y)=(3,2)</math>. | ||
+ | * <math>x_1=9</math> gives <math>y_1=6</math>, hence <math>(x,y)=(17,12)</math>. | ||
+ | * <math>x_1-1=9</math> gives <math>y_1=\sqrt{9\cdot 5}</math>. | ||
+ | * <math>x_1=25</math> gives <math>y_1=\sqrt{25\cdot 12}</math>. | ||
+ | * <math>x_1-1=25</math> gives <math>y_1=\sqrt{25\cdot 13}</math>. | ||
+ | * <math>x_1=49</math> gives <math>y_1=\sqrt{49\cdot 24}</math>. | ||
+ | * <math>x_1-1=49</math> gives <math>y_1=\sqrt{49\cdot 25}=35</math>, hence <math>(x,y)=(99,70)</math>. | ||
+ | * <math>x_1=81</math> gives <math>y_1=\sqrt{81\cdot 40}</math>. | ||
+ | * <math>x_1-1=81</math> gives <math>y_1=\sqrt{81\cdot 41}</math>. | ||
+ | * <math>x_1=121</math> gives <math>y_1=\sqrt{121\cdot 60}</math>. | ||
+ | * <math>x_1-1=121</math> gives <math>y_1=\sqrt{121\cdot 61}</math>. | ||
+ | * <math>x_1=169</math> gives <math>y_1=\sqrt{169\cdot 84}</math>. | ||
+ | * <math>x_1-1=169</math> gives <math>y_1=\sqrt{169\cdot 85}</math>. | ||
+ | * <math>x_1=225</math> gives <math>y_1=\sqrt{225\cdot 112}</math>. | ||
+ | * <math>x_1-1=225</math> gives <math>y_1=\sqrt{225\cdot 113}</math>. | ||
+ | * <math>x_1=289</math> gives <math>y_1=\sqrt{289\cdot 144}=17\cdot 12 = 204</math>, hence <math>(x,y)=(577,408)</math>, and the answer is <math>x+y=\boxed{985}</math>. | ||
− | We | + | ===Solution 2=== |
+ | We quickly find the first solution, <math>(x,y)=(3,2)</math>. Factoring, we get | ||
+ | <cmath>(3-2\sqrt{2})(3+2\sqrt{2})=1</cmath> | ||
+ | We can square both sides to get | ||
+ | <cmath>(3-2\sqrt{2})^2(3+2\sqrt{2})^2=1^2 \Rightarrow (17-12\sqrt{2})(17+12\sqrt{2})=1</cmath> | ||
+ | So <math>(x,y)=(17,12)</math> is another solution. | ||
− | <math> | + | This gives us a way to generate whatever solutions we want to the equation. Raising the first equation to the fourth power gives us |
+ | <cmath>(577-408\sqrt{2})(577+408\sqrt{2})=1</cmath> | ||
+ | The answer is <math>577+408=\boxed{985}</math>. | ||
− | + | ====Solution 3==== | |
− | + | Step 1: Find the fundamental solution to the Pell's equation. The given equation, \(x^{2}-2y^{2}=1\), is a Pell's equation of the form \(x^{2}-Dy^{2}=1\) with \(D=2\). The solutions are positive integers. By checking small integer values, we can find the fundamental solution \((x_{1},y_{1})\).If \(y=1\), \(x^{2}-2(1)^{2}=1\Rightarrow x^{2}=3\), no integer solution.If \(y=2\), \(x^{2}-2(2)^{2}=1\Rightarrow x^{2}=9\Rightarrow x=3\).Thus, the fundamental solution is \((x_{1},y_{1})=(3,2)\). Step 2: Generate subsequent solutions. Subsequent solutions \((x_{n},y_{n})\) can be found using the recursive relation:\(x_{n+1}=x_{1}x_{n}+Dy_{1}y_{n}=3x_{n}+4y_{n}\)\(y_{n+1}=x_{1}y_{n}+y_{1}x_{n}=3y_{n}+2x_{n}\)Or, alternatively, using the identity \(x_{n}+y_{n}\sqrt{2}=(3+2\sqrt{2})^{n}\). Let's find the first four solutions and their corresponding \(x+y\) values. First solution (n=1):\(x_{1}=3,y_{1}=2\)\(x_{1}+y_{1}=3+2=5\) Second solution (n=2):\(x_{2}+y_{2}\sqrt{2}=(3+2\sqrt{2})^{2}=9+12\sqrt{2}+8=17+12\sqrt{2}\).\(x_{2}=17,y_{2}=12\)\(x_{2}+y_{2}=17+12=29\) Third solution (n=3):\(x_{3}+y_{3}\sqrt{2}=(3+2\sqrt{2})^{3}=(17+12\sqrt{2})(3+2\sqrt{2})=51+34\sqrt{2}+36\sqrt{2}+48=99+70\sqrt{2}\).\(x_{3}=99,y_{3}=70\)\(x_{3}+y_{3}=99+70=169\) Fourth solution (n=4):\(x_{4}+y_{4}\sqrt{2}=(3+2\sqrt{2})^{4}=(99+70\sqrt{2})(3+2\sqrt{2})=297+198\sqrt{2}+210\sqrt{2}+280=577+408\sqrt{2}\).\(x_{4}=577,y_{4}=408\)\(x_{4}+y_{4}=577+408=985\) Answer: The first four values of \(x+y\) are 5, 29, 169, and 985. The fourth smallest value of \(x+y\) is 985. | |
− | |||
==See also== | ==See also== |
Latest revision as of 13:10, 26 August 2025
Problem
Find the fourth smallest possible value of where x and y are positive integers that satisfy the following equation:

Solution
Solution 1
means that
is odd. We can let
for some
:
y is even, for some
.
We need to find all integers such that
is twice a perfect square.
Since and
are relatively prime, one of them is a perfect square and the other is twice a perfect square. Moreover, the perfect square must be odd.
We will now find four smallest solutions for . Obviously, these will give the four smallest solutions for
.
Each time we examine whether the value is a positive integer.
gives
which is not positive.
gives
, hence
.
gives
, hence
.
gives
.
gives
.
gives
.
gives
.
gives
, hence
.
gives
.
gives
.
gives
.
gives
.
gives
.
gives
.
gives
.
gives
.
gives
, hence
, and the answer is
.
Solution 2
We quickly find the first solution, . Factoring, we get
We can square both sides to get
So
is another solution.
This gives us a way to generate whatever solutions we want to the equation. Raising the first equation to the fourth power gives us
The answer is
.
Solution 3
Step 1: Find the fundamental solution to the Pell's equation. The given equation, \(x^{2}-2y^{2}=1\), is a Pell's equation of the form \(x^{2}-Dy^{2}=1\) with \(D=2\). The solutions are positive integers. By checking small integer values, we can find the fundamental solution \((x_{1},y_{1})\).If \(y=1\), \(x^{2}-2(1)^{2}=1\Rightarrow x^{2}=3\), no integer solution.If \(y=2\), \(x^{2}-2(2)^{2}=1\Rightarrow x^{2}=9\Rightarrow x=3\).Thus, the fundamental solution is \((x_{1},y_{1})=(3,2)\). Step 2: Generate subsequent solutions. Subsequent solutions \((x_{n},y_{n})\) can be found using the recursive relation:\(x_{n+1}=x_{1}x_{n}+Dy_{1}y_{n}=3x_{n}+4y_{n}\)\(y_{n+1}=x_{1}y_{n}+y_{1}x_{n}=3y_{n}+2x_{n}\)Or, alternatively, using the identity \(x_{n}+y_{n}\sqrt{2}=(3+2\sqrt{2})^{n}\). Let's find the first four solutions and their corresponding \(x+y\) values. First solution (n=1):\(x_{1}=3,y_{1}=2\)\(x_{1}+y_{1}=3+2=5\) Second solution (n=2):\(x_{2}+y_{2}\sqrt{2}=(3+2\sqrt{2})^{2}=9+12\sqrt{2}+8=17+12\sqrt{2}\).\(x_{2}=17,y_{2}=12\)\(x_{2}+y_{2}=17+12=29\) Third solution (n=3):\(x_{3}+y_{3}\sqrt{2}=(3+2\sqrt{2})^{3}=(17+12\sqrt{2})(3+2\sqrt{2})=51+34\sqrt{2}+36\sqrt{2}+48=99+70\sqrt{2}\).\(x_{3}=99,y_{3}=70\)\(x_{3}+y_{3}=99+70=169\) Fourth solution (n=4):\(x_{4}+y_{4}\sqrt{2}=(3+2\sqrt{2})^{4}=(99+70\sqrt{2})(3+2\sqrt{2})=297+198\sqrt{2}+210\sqrt{2}+280=577+408\sqrt{2}\).\(x_{4}=577,y_{4}=408\)\(x_{4}+y_{4}=577+408=985\) Answer: The first four values of \(x+y\) are 5, 29, 169, and 985. The fourth smallest value of \(x+y\) is 985.
See also
2005 Alabama ARML TST (Problems) | ||
Preceded by: Problem 13 |
Followed by: Problem 15 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 |