Difference between revisions of "Basel Problem"

m (Proof)
m (Proof)
 
Line 18: Line 18:
 
<cmath>f'(x) = \frac{i(\cos(x) + i\sin(x))e^{ix} - (\cos(x) + i\sin(x))(ie^{ix})}{(e^{ix})^2} = 0</cmath>  
 
<cmath>f'(x) = \frac{i(\cos(x) + i\sin(x))e^{ix} - (\cos(x) + i\sin(x))(ie^{ix})}{(e^{ix})^2} = 0</cmath>  
  
This means <math>f(x)</math> is a constant. Since <math>f(0) = 1,</math> <math>f(x) = 1</math> for all <math>x,</math> or <math>e^{ix} = \cos(x) + i\sin(x).</math> Here, we have derived [[Euler's Formula]]
+
This means <math>f(x)</math> is a constant. Since <math>f(0) = 1,</math> <math>f(x) = 1</math> for all <math>x,</math> or <math>e^{ix} = \cos(x) + i\sin(x).</math> We have derived [[Euler's Formula]].
  
 
Using the infinite series expansion and substituting <math>ix</math> for <math>x,</math> we get:
 
Using the infinite series expansion and substituting <math>ix</math> for <math>x,</math> we get:

Latest revision as of 17:40, 31 August 2025

The Basel Problem asks for the precise sum of the infinite sum of the reciprocal of squares or: \[\sum_{n=1}^{\infty} \frac{1}{n^2} = 1 + \frac{1}{4} + \frac{1}{9} + ... = ?\]

The answer has been proven to be $\frac{\pi^2}{6}.$

Proof

The derivative of a function $f(x)$ is defined as $f'(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}.$ So the derivative of $f(x) = e^x$ is \[\lim_{h \to 0} \frac{e^{x+h} - e^x}{h} = e^x \lim_{h \to 0} \frac{e^h - 1}{h}.\] Let $e^h - 1 = y.$ Then as $h \to 0$, $y \to 0,$ and $h = \ln(1+y).$ \[e^x \lim_{h \to 0} \frac{e^h - 1}{h} = e^x \lim_{y \to 0} \frac{y}{\ln(1+y)} = e^x \lim_{y \to 0} \frac{1}{\ln(1+y)^{1/y}} = e^x \cdot \frac{1}{\ln \left( \lim_{y \to 0} (1+y)^{1/y} \right)} = e^x \cdot \frac{1}{\ln e} = e^x.\] Since the derivative of $e^x$ is $e^x$ itself, the $n$th derivative of $e^x$ will be $e^x.$ Now, consider the infinite sum $P(x) = \sum_{n=0}^{\infty} a_nx^n = a_0 + a_1x + a_2x^2 + \dots$ The derivatives at $x=0$ are $P(0) = a_0,$ $P'(0) = a_1,$ $P''(0) = 2a_2,$ $P'''(0) = 3 \cdot 2a_3,$ and so on, with $P^{(n)}(0) = n!a_n.$ Let this sum equal the function $f(x) = e^x.$ Then we must have $f^{(n)}(0) = P^{(n)}(0),$ which means $n!a_n = f^{(n)}(0) = e^0 = 1,$ so $a_n = \frac{1}{n!}.$ The series for $e^x$ is thus $e^x = \sum_{n=0}^{\infty} \frac{x^n}{n!} = 1 + x + \frac{x^2}{2!} + \frac{x^3}{3!} + \dots$ Now consider the function $f(x) = \frac{\cos(x) + i\sin(x)}{e^{ix}}.$ We can evaluate its derivative:

\[f'(x) = \frac{i(\cos(x) + i\sin(x))e^{ix} - (\cos(x) + i\sin(x))(ie^{ix})}{(e^{ix})^2} = 0\]

This means $f(x)$ is a constant. Since $f(0) = 1,$ $f(x) = 1$ for all $x,$ or $e^{ix} = \cos(x) + i\sin(x).$ We have derived Euler's Formula.

Using the infinite series expansion and substituting $ix$ for $x,$ we get: \[e^{ix} = \sum_{n=0}^{\infty} \frac{(ix)^n}{n!} = 1 + ix + \frac{(ix)^2}{2!} + \frac{(ix)^3}{3!} + \frac{(ix)^4}{4!} + \frac{(ix)^5}{5!} + \dots\] \[= 1 + ix - \frac{x^2}{2!} - i\frac{x^3}{3!} + \frac{x^4}{4!} + i\frac{x^5}{5!} + \dots\] \[= \left( 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots \right) + i \left( x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots \right).\] By equating the real and imaginary parts of the series with Euler's formula, we find the series expansions for sine and cosine: \[\cos(x) = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots\] \[\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots\] Since $\sin(n\pi) = 0$ for all integers $n,$ the roots of the function $\sin(x)/x$ are at $x = \pm \pi, \pm 2\pi, \pm 3\pi, \dots$ We can factor the polynomial expansion in terms of its roots: \[\sin(x) = x( 1 - \frac{x^2}{\pi^2})( 1 - \frac{x^2}{(2\pi)^2})( 1 - \frac{x^2}{(3\pi)^2}) \dots\] Now, consider the coefficient of the $x^3$ term in the expansion of $\sin(x).$ From the infinite product, the coefficient of the $x^3$ term is found by multiplying the $x$ with each term with the $-(x^2/n^2\pi^2):$ \[\text{Coefficient of } x^3 = -\left( \frac{1}{\pi^2} + \frac{1}{(2\pi)^2} + \frac{1}{(3\pi)^2} + \dots \right) = -\frac{1}{3!}\] Equating the two expressions for the $x^3$ coefficient, we get: \[-\frac{1}{6} = -\frac{1}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2}\] \[\implies \sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}.\]

~grogg007