Difference between revisions of "2021 USAJMO Problems/Problem 2"

m (Solution)
(Redirected page to 2021 USAMO Problems/Problem 1)
(Tag: New redirect)
 
(One intermediate revision by one other user not shown)
Line 1: Line 1:
==Problem==
+
#redirect [[2021 USAMO Problems/Problem 1]]
Rectangles <math>BCC_1B_2,</math> <math>CAA_1C_2,</math> and <math>ABB_1A_2</math> are erected outside an acute triangle <math>ABC.</math> Suppose that<cmath>\angle BC_1C+\angle CA_1A+\angle AB_1B=180^{\circ}.</cmath>Prove that lines <math>B_1C_2,</math> <math>C_1A_2,</math> and <math>A_1B_2</math> are concurrent.
 
 
 
==Solution==
 
[[Image:Leonard my dude.png|frame|none|###px|]]
 
 
 
We first claim that the three circles <math>(BCC_1B_2),</math> <math>(CAA_1C_2),</math> and <math>(ABB_1A_2)</math> share a common intersection.
 
 
 
Let the second intersection of <math>(BCC_1B_2)</math> and <math>(ABB_1A_2)</math> be <math>X</math>. Then
 
<cmath>\begin{align*}
 
\angle AXC &= 360^\circ - \angle BXA - \angle CXB \\
 
&= 360^\circ - (180^\circ - \angle AB_1B + 180^\circ - \angle BC_1C) \\&
 
= 180^\circ - \angle CA_1A,
 
\end{align*}</cmath>
 
which implies that <math>AA_1C_2CX</math> is cyclic as desired.
 
 
 
Now we show that <math>X</math> is the intersection of <math>B_1C_2,</math> <math>C_1A_2,</math> and <math>A_1B_2.</math> Note that <math>\angle C_1XB = \angle BXA_2 = 90^\circ,</math> so <math>A_2, X, C_1</math> are collinear. Similarly, <math>B_1, X, C_2</math> and <math>A_1, X, B_2</math> are collinear, so the three lines concur and we are done.
 
 
 
~Leonard_my_dude
 
Edited by pear333
 
 
 
== See Also ==
 
{{USAJMO newbox|year=2021|num-b=1|num-a=3}}
 
 
 
[[Category:Olympiad Geometry Problems]]
 
{{MAA Notice}}
 

Latest revision as of 13:22, 1 September 2025