Difference between revisions of "2020 USAMO Problems/Problem 1"
Sugar rush (talk | contribs) (Created blank page) |
|||
(7 intermediate revisions by 2 users not shown) | |||
Line 1: | Line 1: | ||
+ | ==Problem 1== | ||
+ | Let <math>ABC</math> be a fixed acute triangle inscribed in a circle <math>\omega</math> with center <math>O</math>. A variable point <math>X</math> is chosen on minor arc <math>AB</math> of <math>\omega</math>, and segments <math>CX</math> and <math>AB</math> meet at <math>D</math>. Denote by <math>O_1</math> and <math>O_2</math> the circumcenters of triangles <math>ADX</math> and <math>BDX</math>, respectively. Determine all points <math>X</math> for which the area of triangle <math>OO_1O_2</math> is minimized. | ||
+ | |||
+ | |||
+ | ==Solution== | ||
+ | [[File:2020 USAMO 1.png|400px|right]] | ||
+ | Let <math>E</math> be midpoint <math>AD.</math> Let <math>F</math> be midpoint <math>BD \implies</math> | ||
+ | <cmath>EF = ED + FD = \frac {AD}{2} + \frac {BD}{2} = \frac {AB}{2}.</cmath> | ||
+ | <math>E</math> and <math>F</math> are the bases of perpendiculars dropped from <math>O_1</math> and <math>O_2,</math> respectively. | ||
+ | |||
+ | Therefore <math>O_1O_2 \ge EF = \frac {AB}{2}.</math> | ||
+ | |||
+ | <cmath>CX \perp O_1O_2, AX \perp O_1O \implies \angle O O_1O_2 = \angle AXC</cmath> | ||
+ | <math>\angle AXC = \angle ABC (AXBC</math> is cyclic) <math>\implies \angle O O_1O_2 = \angle ABC.</math> | ||
+ | |||
+ | Similarly <math>\angle BAC = \angle O O_2 O_1 \implies \triangle ABC \sim \triangle O_2 O_1O.</math> | ||
+ | |||
+ | The area of <math>\triangle OO_1O_2</math> is minimized if <math>CX \perp AB</math> because | ||
+ | <cmath>\frac {[OO_1O_2]} {[ABC]} = \left(\frac {O_1 O_2} {AB}\right)^2 \ge \left(\frac {EF} {AB}\right)^2 = \frac {1}{4}.</cmath> | ||
+ | '''vladimir.shelomovskii@gmail.com, vvsss''' | ||
+ | |||
+ | ==Video Solution 1== | ||
+ | https://www.youtube.com/watch?v=m157cfw0vdE | ||
+ | |||
+ | ==Video Solution 2== | ||
+ | https://youtube.com/watch?v=HLNb_4KmayA | ||
+ | |||
+ | ==See also== | ||
+ | {{USAMO newbox|year=2020|before=First Problem|num-a=2}} | ||
+ | {{MAA Notice}} |
Latest revision as of 13:42, 1 September 2025
Problem 1
Let be a fixed acute triangle inscribed in a circle
with center
. A variable point
is chosen on minor arc
of
, and segments
and
meet at
. Denote by
and
the circumcenters of triangles
and
, respectively. Determine all points
for which the area of triangle
is minimized.
Solution
Let be midpoint
Let
be midpoint
and
are the bases of perpendiculars dropped from
and
respectively.
Therefore
is cyclic)
Similarly
The area of is minimized if
because
vladimir.shelomovskii@gmail.com, vvsss
Video Solution 1
https://www.youtube.com/watch?v=m157cfw0vdE
Video Solution 2
https://youtube.com/watch?v=HLNb_4KmayA
See also
2020 USAMO (Problems • Resources) | ||
Preceded by First Problem |
Followed by Problem 2 | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAMO Problems and Solutions |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.