Difference between revisions of "2021 WSMO Team Round Problems/Problem 7"
(Created page with "==Problem== A frog makes one hop every minute on the first quadrant of the coordinate plane (this means that the frog's <math>x</math> and <math>y</math> coordinates are posit...") |
|||
Line 5: | Line 5: | ||
==Solution== | ==Solution== | ||
+ | Let <math>E_{(x,y)}</math> be the expected time it takes to get from <math>(x,y)</math> to <math>x+y=5.</math> By symmetry, we have <math>E_{(1,2)} = E_{(2,1)}</math> and <math>E_{(1,3)}=E_{(3,1)}</math>. Now, note that for all points satisfying <math>x+y=5,</math> we have <math>E_{(x,y)}=0.</math> Notably, <math>E_{(1,4)}=E_{(2,3)}=E_{(3,2)}=E_{(4,1)}=0.</math> Now, we apply probabilistic states. | ||
+ | For <math>(1,1)</math>, we have | ||
+ | \begin{align*} | ||
+ | E_{(1,1)} &= \frac{1}{3}E_{(1,1)}+\frac{1}{3}E_{(1,2)}+\frac{1}{3}E_{(2,1)}+1 \implies\\ | ||
+ | \frac{2}{3}E_{(1,1)} &= \frac{2}{3}E_{(1,2)}+1 \implies\\ | ||
+ | E_{(1,2)} &= E_{(1,1)}-\frac{3}{2}. | ||
+ | \end{align*} | ||
+ | For <math>(1,2)</math>, we have, | ||
+ | \begin{align*} | ||
+ | E_{(1,2)} &= \frac{1}{4}E_{(1,2)}+\frac{1}{4}E_{(1,1)}+\frac{1}{4}E_{(2,2)}+\frac{1}{4}E_{(1,3)}+1 \implies\\ | ||
+ | \frac{3}{4}E_{(1,2)} &= \frac{1}{4}E_{(1,1)}+\frac{1}{4}E_{(2,2)}+\frac{1}{4}E_{(1,3)}+1 \implies\\ | ||
+ | E_{(1,2)} &= \frac{1}{3}E_{(1,1)}+\frac{1}{3}E_{(2,2)}+\frac{1}{3}E_{(1,3)}+\frac{4}{3}\tag{1}\\ | ||
+ | \end{align*} | ||
+ | For <math>(1,3)</math>, we have, | ||
+ | \begin{align*} | ||
+ | E_{(1,3)} &= \frac{1}{4}E_{(1,3)}+\frac{1}{4}E_{(1,2)}+\frac{1}{4}E_{(3,2)}+\frac{1}{4}E_{(1,4)}+1 \implies\\ | ||
+ | \frac{3}{4}E_{(1,3)} &= \frac{1}{4}E_{(1,2)}+\frac{1}{4}\cdot0+\frac{1}{4}\cdot0+1\implies\\ | ||
+ | E_{(1,3)} &= \frac{1}{3}E_{(1,2)}+\frac{4}{3} \\ | ||
+ | &= \frac{1}{3}\left(E_{(1,1)}-\frac{3}{2}\right)+\frac{4}{3} \implies\\ | ||
+ | &= \frac{1}{3}E_{(1,1)}+\frac{5}{6}. | ||
+ | \end{align*} | ||
+ | For <math>(2,2)</math>, we have, | ||
+ | \begin{align*} | ||
+ | E_{(2,2)} &= \frac{1}{5}E_{(2,2)}+\frac{1}{5}E_{(1,2)}+\frac{1}{5}E_{(2,1)}+\frac{1}{5}E_{(2,3)}+\frac{1}{5}E_{(3,2)}+1. \implies\\ | ||
+ | \frac{4}{5}E_{(2,2)} &= \frac{1}{5}E_{(1,2)}+\frac{1}{5}E_{(1,2)}+\frac{1}{5}\cdot0+\frac{1}{5}\cdot0+1 \implies\\ | ||
+ | \frac{4}{5}E_{(2,2)} &= \frac{2}{5}E_{(1,2)}+1 \implies\\ | ||
+ | E_{(2,2)} &= \frac{1}{2}E_{(1,2)}+\frac{5}{4} \\ | ||
+ | &= \frac{1}{2}\left(E_{(1,1)}-\frac{3}{2}\right)+\frac{5}{4} \\ | ||
+ | &= \frac{1}{2}E_{(1,1)}+\frac{1}{2}. | ||
+ | \end{align*} | ||
+ | Subtituting the values of <math>E_{(1,2)},E_{(1,3)},</math> and <math>E_{(2,2)}</math> into equation (1), we have | ||
+ | \begin{align*} | ||
+ | E_{(1,1)}-\frac{3}{2}&=\frac{1}{3}E_{(1,1)}+\frac{1}{3}\left(\frac{1}{2}E_{(1,1)}+\frac{1}{2}\right)+\frac{1}{3}\left(\frac{1}{3}E_{(1,1)}+\frac{5}{6}\right)+\frac{4}{3} \\ | ||
+ | E_{(1,1)}-\frac{3}{2} &= \frac{11}{18}E_{(1,1)}+\frac{16}{9} \implies\\ | ||
+ | \frac{7}{18}E_{(1,1)} &= \frac{59}{18} \implies\\ | ||
+ | E_{(1,1)} &= \frac{56}{7} \implies 59+7 = \boxed{66}. | ||
+ | \end{align*} | ||
+ | ~pinkpig |
Latest revision as of 14:00, 9 September 2025
Problem
A frog makes one hop every minute on the first quadrant of the coordinate plane (this means that the frog's and
coordinates are positive). The frog can hop up one unit, right one unit, left one unit, down one unit, or it can stay in place, and will always randomly choose a valid hop from these 5 directions (a valid hop is a hop that does not place the frog outside the first quadrant). Given that the frog starts at
, the expected number of minutes until the frog reaches the line
can be expressed as
, where
and
are relatively prime positive integers. Find
.
Proposed by asdf334
Solution
Let be the expected time it takes to get from
to
By symmetry, we have
and
. Now, note that for all points satisfying
we have
Notably,
Now, we apply probabilistic states.
For
, we have
\begin{align*}
E_{(1,1)} &= \frac{1}{3}E_{(1,1)}+\frac{1}{3}E_{(1,2)}+\frac{1}{3}E_{(2,1)}+1 \implies\\
\frac{2}{3}E_{(1,1)} &= \frac{2}{3}E_{(1,2)}+1 \implies\\
E_{(1,2)} &= E_{(1,1)}-\frac{3}{2}.
\end{align*}
For
, we have,
\begin{align*}
E_{(1,2)} &= \frac{1}{4}E_{(1,2)}+\frac{1}{4}E_{(1,1)}+\frac{1}{4}E_{(2,2)}+\frac{1}{4}E_{(1,3)}+1 \implies\\
\frac{3}{4}E_{(1,2)} &= \frac{1}{4}E_{(1,1)}+\frac{1}{4}E_{(2,2)}+\frac{1}{4}E_{(1,3)}+1 \implies\\
E_{(1,2)} &= \frac{1}{3}E_{(1,1)}+\frac{1}{3}E_{(2,2)}+\frac{1}{3}E_{(1,3)}+\frac{4}{3}\tag{1}\\
\end{align*}
For
, we have,
\begin{align*}
E_{(1,3)} &= \frac{1}{4}E_{(1,3)}+\frac{1}{4}E_{(1,2)}+\frac{1}{4}E_{(3,2)}+\frac{1}{4}E_{(1,4)}+1 \implies\\
\frac{3}{4}E_{(1,3)} &= \frac{1}{4}E_{(1,2)}+\frac{1}{4}\cdot0+\frac{1}{4}\cdot0+1\implies\\
E_{(1,3)} &= \frac{1}{3}E_{(1,2)}+\frac{4}{3} \\
&= \frac{1}{3}\left(E_{(1,1)}-\frac{3}{2}\right)+\frac{4}{3} \implies\\
&= \frac{1}{3}E_{(1,1)}+\frac{5}{6}.
\end{align*}
For
, we have,
\begin{align*}
E_{(2,2)} &= \frac{1}{5}E_{(2,2)}+\frac{1}{5}E_{(1,2)}+\frac{1}{5}E_{(2,1)}+\frac{1}{5}E_{(2,3)}+\frac{1}{5}E_{(3,2)}+1. \implies\\
\frac{4}{5}E_{(2,2)} &= \frac{1}{5}E_{(1,2)}+\frac{1}{5}E_{(1,2)}+\frac{1}{5}\cdot0+\frac{1}{5}\cdot0+1 \implies\\
\frac{4}{5}E_{(2,2)} &= \frac{2}{5}E_{(1,2)}+1 \implies\\
E_{(2,2)} &= \frac{1}{2}E_{(1,2)}+\frac{5}{4} \\
&= \frac{1}{2}\left(E_{(1,1)}-\frac{3}{2}\right)+\frac{5}{4} \\
&= \frac{1}{2}E_{(1,1)}+\frac{1}{2}.
\end{align*}
Subtituting the values of
and
into equation (1), we have
\begin{align*}
E_{(1,1)}-\frac{3}{2}&=\frac{1}{3}E_{(1,1)}+\frac{1}{3}\left(\frac{1}{2}E_{(1,1)}+\frac{1}{2}\right)+\frac{1}{3}\left(\frac{1}{3}E_{(1,1)}+\frac{5}{6}\right)+\frac{4}{3} \\
E_{(1,1)}-\frac{3}{2} &= \frac{11}{18}E_{(1,1)}+\frac{16}{9} \implies\\
\frac{7}{18}E_{(1,1)} &= \frac{59}{18} \implies\\
E_{(1,1)} &= \frac{56}{7} \implies 59+7 = \boxed{66}.
\end{align*}
~pinkpig