Difference between revisions of "2025 SSMO Speed Round Problems/Problem 2"

(Created page with "==Problem== Let <math>A</math> and <math>B</math> be points such that <math>AB = 50</math>. Points <math>M</math> and <math>N</math> lie on <math>\overline{AB}</math> such th...")
 
m (Solution)
 
(One intermediate revision by the same user not shown)
Line 4: Line 4:
  
 
==Solution==
 
==Solution==
 +
 +
<asy>
 +
pair A,B,M,N;
 +
A=(0,0);
 +
B=(50,0);
 +
N=(35,0);
 +
M=(15,0);
 +
 +
draw(A--B);
 +
 +
dot(A,linewidth(4));
 +
dot(B,linewidth(4));
 +
dot(M,linewidth(4));
 +
dot(N,linewidth(4));
 +
 +
label("$A$",A,dir(90));
 +
label("$B$",B,dir(90));
 +
label("$M$",M,dir(90));
 +
label("$N$",N,dir(90));
 +
</asy>
 +
 +
Note that <math>AN+BM = AB + MN = 70</math>. By AM-GM, the value of <math>AN\cdot BM</math> is at a maximum when <math>AN = BM = 35</math>. Thus, <math>AM = AN-MN = \boxed{15}</math>.
 +
 +
~Sedro

Latest revision as of 15:02, 9 September 2025

Problem

Let $A$ and $B$ be points such that $AB = 50$. Points $M$ and $N$ lie on $\overline{AB}$ such that $M$ lies between points $A$ and $N$ and $N$ lies between points $B$ and $M$. Given that $MN = 20$ and $AN \cdot BM$ is maximized, find the length of $AM$.

Solution

[asy] pair A,B,M,N; A=(0,0); B=(50,0); N=(35,0); M=(15,0);  draw(A--B);  dot(A,linewidth(4)); dot(B,linewidth(4)); dot(M,linewidth(4)); dot(N,linewidth(4));  label("$A$",A,dir(90)); label("$B$",B,dir(90)); label("$M$",M,dir(90)); label("$N$",N,dir(90)); [/asy]

Note that $AN+BM = AB + MN = 70$. By AM-GM, the value of $AN\cdot BM$ is at a maximum when $AN = BM = 35$. Thus, $AM = AN-MN = \boxed{15}$.

~Sedro