Difference between revisions of "2024 SSMO Speed Round Problems/Problem 3"

(Created page with "==Problem== The polynomial <math>x^3 - 15x^2 + 4x + 4</math> has distinct real roots <math>r</math>, <math>s</math>, and <math>t</math>. Find the value of <cmath>\left|(r^2 +...")
 
 
(3 intermediate revisions by 2 users not shown)
Line 3: Line 3:
 
The polynomial <math>x^3 - 15x^2 + 4x + 4</math> has distinct real roots <math>r</math>, <math>s</math>, and <math>t</math>. Find the value of <cmath>\left|(r^2 + s^2 + t^2)(rst)\right|.</cmath>
 
The polynomial <math>x^3 - 15x^2 + 4x + 4</math> has distinct real roots <math>r</math>, <math>s</math>, and <math>t</math>. Find the value of <cmath>\left|(r^2 + s^2 + t^2)(rst)\right|.</cmath>
  
==Solution==
+
==Solution 1==
 +
 
 +
From Vieta's formulas, we have <math>r+s+t = 15, rs+rt+st = 4, </math> and <math>rst = -4.</math> Now, note that
 +
<cmath>\begin{align*}
 +
\left|\left(r^2+s^2+t^2\right)(rst)\right| &= \left|\left(\left(r+s+t\right)^2-2(rs+rt+st)\right)\right|\\
 +
&=\left((15^2-2\cdot4\right)(-4)\\
 +
&=\left|217\cdot(-4)\right| = \boxed{868}.\end{align*}</cmath>
 +
 
 +
~SMO_Team
 +
 
 +
==Solution 2==
 +
By Vieta's, we have that <math>r^2+s^2+t^2 = (r+s+t)^2 - 2(rs+st+rt) = 15^2 - 2(4) = 217</math> and <math>rst = -4</math>. Thus, <math>|(r^2+s^2+t^2)(rst)| = |217\cdot (-4)| = \boxed{868}</math>.
 +
 
 +
-Vivdax

Latest revision as of 14:26, 10 September 2025

Problem

The polynomial $x^3 - 15x^2 + 4x + 4$ has distinct real roots $r$, $s$, and $t$. Find the value of \[\left|(r^2 + s^2 + t^2)(rst)\right|.\]

Solution 1

From Vieta's formulas, we have $r+s+t = 15, rs+rt+st = 4,$ and $rst = -4.$ Now, note that \begin{align*} \left|\left(r^2+s^2+t^2\right)(rst)\right| &= \left|\left(\left(r+s+t\right)^2-2(rs+rt+st)\right)\right|\\ &=\left((15^2-2\cdot4\right)(-4)\\ &=\left|217\cdot(-4)\right| = \boxed{868}.\end{align*}

~SMO_Team

Solution 2

By Vieta's, we have that $r^2+s^2+t^2 = (r+s+t)^2 - 2(rs+st+rt) = 15^2 - 2(4) = 217$ and $rst = -4$. Thus, $|(r^2+s^2+t^2)(rst)| = |217\cdot (-4)| = \boxed{868}$.

-Vivdax