Difference between revisions of "2024 SSMO Team Round Problems/Problem 6"
(Created page with "==Problem== Let <math>\alpha</math>, <math>\beta</math>, and <math>\gamma</math> be the roots of the polynomial <math>x^3 - 6x^2 - 19x - n</math>. If <math>n</math> is an int...") |
|||
Line 4: | Line 4: | ||
==Solution== | ==Solution== | ||
+ | From Vieta's Formulas, we have <cmath>\alpha+\beta+\gamma = 6,\alpha\beta+\alpha\gamma+\beta\gamma = -19,\text{ and }\alpha\beta\gamma = n.</cmath> Since <math>x^3-6x^2-19x-n = 0</math> for <math>x \in \{\alpha,\beta,\gamma\},</math> we have <math>x^3 = 6x^2+19x+n.</math> So, | ||
+ | \begin{align*} | ||
+ | \alpha^3+\beta^3+\gamma^3&=(6\alpha^2+19\alpha+n)+(6\beta^2+19\beta+n)\\&+(6\gamma^2+19\gamma+n)\\ | ||
+ | &=6(\alpha^2+\beta^2+\gamma^2)+19(\alpha+\beta+\gamma)+3n\\ | ||
+ | &=6((\alpha+\beta+\gamma)^2-2(\alpha\beta+\alpha\gamma+\beta\gamma))\\ | ||
+ | &+19(\alpha+\beta+\gamma)+3n\\ | ||
+ | &=6((6^2)-2(-19))+19(6)+3n = 558+3n. | ||
+ | \end{align*} | ||
+ | Since <math>n</math> is an integer and we are seeking to find the least positive value of <math>558+3n = 3(n+186),</math> we let <math>n = -185,</math> giving an answer of <math>\boxed{3}.</math> | ||
+ | |||
+ | ~SMO_Team |
Latest revision as of 14:37, 10 September 2025
Problem
Let ,
, and
be the roots of the polynomial
. If
is an integer, what is the least possible positive value of
?
Solution
From Vieta's Formulas, we have Since
for
we have
So,
\begin{align*}
\alpha^3+\beta^3+\gamma^3&=(6\alpha^2+19\alpha+n)+(6\beta^2+19\beta+n)\\&+(6\gamma^2+19\gamma+n)\\
&=6(\alpha^2+\beta^2+\gamma^2)+19(\alpha+\beta+\gamma)+3n\\
&=6((\alpha+\beta+\gamma)^2-2(\alpha\beta+\alpha\gamma+\beta\gamma))\\
&+19(\alpha+\beta+\gamma)+3n\\
&=6((6^2)-2(-19))+19(6)+3n = 558+3n.
\end{align*}
Since
is an integer and we are seeking to find the least positive value of
we let
giving an answer of
~SMO_Team