Difference between revisions of "2024 SSMO Team Round Problems/Problem 14"

(Created page with "==Problem== Let <math>a_1, a_2, \dots, a_7</math> be the roots of the polynomial <cmath>x^7+5x^6+9x^5+x^4+x^3+10x^2+5x+1.</cmath> Find the value of <cmath>\left|\prod_{n=1}^7...")
 
 
Line 4: Line 4:
  
 
==Solution==
 
==Solution==
 +
Let <math>f(x)</math> denote the polynomial. We have <cmath>\left(\prod_{n=1}^7 \prod_{m=n+1}^7 (a_na_m-1)\right)^2\prod_{n=1}^{7}(a_n^2-1) = \prod_{n=1}^7\prod_{m=1}^7(a_na_m-1),</cmath> since <math>1 \le n \le 7, n+1 \le m \le 7</math> covers the <math>m>n</math> case of <math>1 \le m,n \le 7,</math> (which is the domain of the RHS product) squaring the nested product doubles it, covering the symmetric <math>n>m</math> case, and the third factor covers the <math>m=n</math> case. Now, note that \begin{align*}
 +
\prod_{m=1}^{7}(a_na_m-1)&=-a_n^7\prod_{m=1}^7\left(\frac{1}{a_n}-a_m\right)\\
 +
&=-a_n^7f\left(\frac{1}{a_n}\right)\\
 +
&=-a_n^7-(5a_n^6+10a_n^5+a_n^4+a_n^3+9a_n^2+5a_n+1)\\
 +
&=(5a_n^6+9a_n^5+a_n^4+a_n^3+10a_n^2+5a_n+1)-(5a_n^6+10a_n^5+a_n^4+a_n^3+9a_n^2+5a_n+1)\\
 +
&=-a_n^5+a_n^2\\
 +
&=-(a_n)^2(a_n^3-1).
 +
\end{align*}
 +
So,
 +
\begin{align*}
 +
\prod_{n=1}^7\prod_{n=1}^7(a_na_m-1)&=\prod_{n=1}^7\left(-(a_n)^2(a_n^3-1)\right)\\
 +
&=-\left(\prod_{n=1}^7a_n\right)^2\prod_{n=1}^7(a_n-1)\prod_{n=1}(a_n-e^{\frac{2\pi i}{3}})\prod_{n=1}(a_n-e^{\frac{4\pi i}{3}})\\
 +
&=-(-1)^2(-f(1))\left(-f\left(e^{\frac{2\pi i}{3}}\right)\right)\left(-f\left(e^{\frac{4\pi i}{3}}\right)\right)\\
 +
&=f(1)f\left(e^{\frac{2\pi i}{3}}\right)f\left(e^{\frac{4\pi i}{3}}\right).
 +
\end{align*}
 +
For <math>\omega^3=1</math> and <math>\omega \ne 1,</math> <math>f(\omega) = 19\omega^2+7\omega+7 = 12\omega^2.</math> So,
 +
\begin{align*}
 +
f\left(e^{\frac{2\pi i}{3}}\right) &= 12\left(\frac{-1+i\sqrt{3}}{2}\right)^2 = \frac{-12-12i\sqrt{3}}{2} = -6-6i\sqrt{3}\text{ and }\\
 +
f\left(e^{\frac{4\pi i}{3}}\right) &= 12\left(\frac{-1-i\sqrt{3}}{2}\right)^2 = \frac{-12+12i\sqrt{3}}{2} = -6+6i\sqrt{3}\implies\\
 +
f\left(e^{\frac{2\pi i}{3}}\right)f\left(e^{\frac{4\pi i}{3}}\right) &= (-6-6i\sqrt{3})(-6+6i\sqrt{3}) = 144.
 +
\end{align*}
 +
Thus, <cmath>\prod_{n=1}^7\prod_{n=1}^7(a_na_m-1) = f(1)f\left(e^{\frac{2\pi i}{3}}\right)f\left(e^{\frac{4\pi i}{3}}\right) = 33 \cdot 144.</cmath>
 +
Now, we have
 +
\begin{align*}
 +
\prod_{n=1}^7(a_n^2-1)&=\prod_{n=1}^7(a_n-1)\prod_{n-1}^7(a_n+1)\\
 +
&=(-f(1))(-f(-1))\\
 +
&=f(1)f(-1)\\
 +
&=33\cdot1 = 33.
 +
\end{align*}
 +
Substituting this into <cmath>\left(\prod_{n=1}^7 \prod_{m=n+1}^7 (a_na_m-1)\right)^2\prod_{n=1}^{7}(a_n^2-1) = \prod_{n=1}^7\prod_{m=1}^7(a_na_m-1),</cmath> we have <cmath>\left(\prod_{n=1}^7 \prod_{m=n+1}^7 (a_na_m-1)\right)^2 = \frac{33\cdot144}{33} = 144\implies \left| \prod_{n=1}^7 \prod_{m=n+1}^7 (a_na_m-1) \right| = \sqrt{144}\implies\boxed{12}.</cmath>
 +
 +
~SMO_Team

Latest revision as of 14:42, 10 September 2025

Problem

Let $a_1, a_2, \dots, a_7$ be the roots of the polynomial \[x^7+5x^6+9x^5+x^4+x^3+10x^2+5x+1.\] Find the value of \[\left|\prod_{n=1}^7 \prod_{m=n+1}^7 (a_na_m-1)\right|.\]

Solution

Let $f(x)$ denote the polynomial. We have \[\left(\prod_{n=1}^7 \prod_{m=n+1}^7 (a_na_m-1)\right)^2\prod_{n=1}^{7}(a_n^2-1) = \prod_{n=1}^7\prod_{m=1}^7(a_na_m-1),\] since $1 \le n \le 7, n+1 \le m \le 7$ covers the $m>n$ case of $1 \le m,n \le 7,$ (which is the domain of the RHS product) squaring the nested product doubles it, covering the symmetric $n>m$ case, and the third factor covers the $m=n$ case. Now, note that \begin{align*} \prod_{m=1}^{7}(a_na_m-1)&=-a_n^7\prod_{m=1}^7\left(\frac{1}{a_n}-a_m\right)\\ &=-a_n^7f\left(\frac{1}{a_n}\right)\\ &=-a_n^7-(5a_n^6+10a_n^5+a_n^4+a_n^3+9a_n^2+5a_n+1)\\ &=(5a_n^6+9a_n^5+a_n^4+a_n^3+10a_n^2+5a_n+1)-(5a_n^6+10a_n^5+a_n^4+a_n^3+9a_n^2+5a_n+1)\\ &=-a_n^5+a_n^2\\ &=-(a_n)^2(a_n^3-1). \end{align*} So, \begin{align*} \prod_{n=1}^7\prod_{n=1}^7(a_na_m-1)&=\prod_{n=1}^7\left(-(a_n)^2(a_n^3-1)\right)\\ &=-\left(\prod_{n=1}^7a_n\right)^2\prod_{n=1}^7(a_n-1)\prod_{n=1}(a_n-e^{\frac{2\pi i}{3}})\prod_{n=1}(a_n-e^{\frac{4\pi i}{3}})\\ &=-(-1)^2(-f(1))\left(-f\left(e^{\frac{2\pi i}{3}}\right)\right)\left(-f\left(e^{\frac{4\pi i}{3}}\right)\right)\\ &=f(1)f\left(e^{\frac{2\pi i}{3}}\right)f\left(e^{\frac{4\pi i}{3}}\right). \end{align*} For $\omega^3=1$ and $\omega \ne 1,$ $f(\omega) = 19\omega^2+7\omega+7 = 12\omega^2.$ So, \begin{align*} f\left(e^{\frac{2\pi i}{3}}\right) &= 12\left(\frac{-1+i\sqrt{3}}{2}\right)^2 = \frac{-12-12i\sqrt{3}}{2} = -6-6i\sqrt{3}\text{ and }\\ f\left(e^{\frac{4\pi i}{3}}\right) &= 12\left(\frac{-1-i\sqrt{3}}{2}\right)^2 = \frac{-12+12i\sqrt{3}}{2} = -6+6i\sqrt{3}\implies\\ f\left(e^{\frac{2\pi i}{3}}\right)f\left(e^{\frac{4\pi i}{3}}\right) &= (-6-6i\sqrt{3})(-6+6i\sqrt{3}) = 144. \end{align*} Thus, \[\prod_{n=1}^7\prod_{n=1}^7(a_na_m-1) = f(1)f\left(e^{\frac{2\pi i}{3}}\right)f\left(e^{\frac{4\pi i}{3}}\right) = 33 \cdot 144.\] Now, we have \begin{align*} \prod_{n=1}^7(a_n^2-1)&=\prod_{n=1}^7(a_n-1)\prod_{n-1}^7(a_n+1)\\ &=(-f(1))(-f(-1))\\ &=f(1)f(-1)\\ &=33\cdot1 = 33. \end{align*} Substituting this into \[\left(\prod_{n=1}^7 \prod_{m=n+1}^7 (a_na_m-1)\right)^2\prod_{n=1}^{7}(a_n^2-1) = \prod_{n=1}^7\prod_{m=1}^7(a_na_m-1),\] we have \[\left(\prod_{n=1}^7 \prod_{m=n+1}^7 (a_na_m-1)\right)^2 = \frac{33\cdot144}{33} = 144\implies \left| \prod_{n=1}^7 \prod_{m=n+1}^7 (a_na_m-1) \right| = \sqrt{144}\implies\boxed{12}.\]

~SMO_Team