Difference between revisions of "2024 SSMO Relay Round 1 Problems/Problem 1"

(Created page with "==Problem== Let <math>AD</math> be an altitude of triangle <math>ABC</math> and let <math>DE</math> be an altitude of triangle <math>ACD.</math> If <math>AB=29,CE=9,</math> a...")
 
 
Line 21: Line 21:
  
 
==Solution==
 
==Solution==
 +
From the Pythagorean Theorem, we have <math>DC = 15.</math> From similar triangles, <math>\frac{DC}{AD} = \frac{EC}{DE} = \frac{3}{4}\implies AD = 20.</math> So, <math>BD = \sqrt{29^2-20^2} = 21.</math> In conclusion, <cmath>[ABC] = \frac{1}{2}(BC)AD = \frac{1}{2}(BD+DC)(AD) = \frac{1}{2}(21+15)(20) = \boxed{360}.</cmath>
 +
 +
~SMO_Team

Latest revision as of 14:42, 10 September 2025

Problem

Let $AD$ be an altitude of triangle $ABC$ and let $DE$ be an altitude of triangle $ACD.$ If $AB=29,CE=9,$ and $DE=12,$ what is the area of triangle $ABC?$

[asy] size(200); pair A,B,C,D,EE; A = (0,20); B = (-21,0); C = (15,0); D = (0,0); EE = 0.36*A+0.64*C; draw(A--B--C--cycle); draw(A--D--EE); dot("\(A\)", A, N); dot("\(B\)", B, W); dot("\(C\)", C, E); dot("\(D\)", D, S); dot("\(E\)", EE, dir(EE)); [/asy]

Solution

From the Pythagorean Theorem, we have $DC = 15.$ From similar triangles, $\frac{DC}{AD} = \frac{EC}{DE} = \frac{3}{4}\implies AD = 20.$ So, $BD = \sqrt{29^2-20^2} = 21.$ In conclusion, \[[ABC] = \frac{1}{2}(BC)AD = \frac{1}{2}(BD+DC)(AD) = \frac{1}{2}(21+15)(20) = \boxed{360}.\]

~SMO_Team