Difference between revisions of "2024 SSMO Relay Round 2 Problems/Problem 3"
(Created page with "==Problem== Let <math>T = TNYWR.</math> A point <math>P</math> is randomly chosen inside the square with vertices <math>A = (0,0), B = (0,T), C = (T,T),</math> and <math>D =...") |
|||
Line 4: | Line 4: | ||
==Solution== | ==Solution== | ||
+ | Let <math>P = (x,y).</math> We have | ||
+ | \begin{align*} | ||
+ | \sqrt{x^2+y^2}+\sqrt{(X-T)^2+(y-T)^2}&\ge\sqrt{x^2+(y-T)^2}+\sqrt{(x-T)^2+y^2}\implies\\ | ||
+ | x^2+y^2+(x-T)^2+(y-T^2)&+2\sqrt{x^2+y^2}\cdot\sqrt{(X-T)^2+(y-T)^2}\ge\\ x^2+(y-T)^2+(x-T)^2&+y^2+2\sqrt{x^2+(y-T)^2}\cdot\sqrt{(x-T)^2+y^2}\implies\\ | ||
+ | (x^2+y^2)((x-T)^2+(y-T)^2)&\ge(x^2+(y-T)^2)(y^2+(x-T)^2)\implies\\ | ||
+ | y^2(x-T)^2+(x^2)(y-T)^2&\ge x^2y^2+(x-T)^2(y-T)^2\implies\\ | ||
+ | (x^2-(x-T)^2)(y^2-(y-T)^2)&\le0\implies\\ | ||
+ | (T^2-2xT)(T^2-2yT)&\le0\implies\\ | ||
+ | \left(x-\frac{T}{2}\right)\left(y-\frac{T}{2}\right)\le0. | ||
+ | \end{align*} | ||
+ | So, if we split the square into four smaller squares by drawing lines <math>x=\frac{T}{2},y = \frac{T}{2},</math> the set <math>S</math> is equivalent to the bottom left and top right squares. Thus, the perimeter of the set <math>S</math> is equivalent to <math>4T = 4\cdot890 = \boxed{3560}.</math> | ||
+ | |||
+ | ~SMO_Team |
Latest revision as of 14:44, 10 September 2025
Problem
Let A point
is randomly chosen inside the square with vertices
and
. Find the perimeter of the set
containing all points
for which
Solution
Let We have
\begin{align*}
\sqrt{x^2+y^2}+\sqrt{(X-T)^2+(y-T)^2}&\ge\sqrt{x^2+(y-T)^2}+\sqrt{(x-T)^2+y^2}\implies\\
x^2+y^2+(x-T)^2+(y-T^2)&+2\sqrt{x^2+y^2}\cdot\sqrt{(X-T)^2+(y-T)^2}\ge\\ x^2+(y-T)^2+(x-T)^2&+y^2+2\sqrt{x^2+(y-T)^2}\cdot\sqrt{(x-T)^2+y^2}\implies\\
(x^2+y^2)((x-T)^2+(y-T)^2)&\ge(x^2+(y-T)^2)(y^2+(x-T)^2)\implies\\
y^2(x-T)^2+(x^2)(y-T)^2&\ge x^2y^2+(x-T)^2(y-T)^2\implies\\
(x^2-(x-T)^2)(y^2-(y-T)^2)&\le0\implies\\
(T^2-2xT)(T^2-2yT)&\le0\implies\\
\left(x-\frac{T}{2}\right)\left(y-\frac{T}{2}\right)\le0.
\end{align*}
So, if we split the square into four smaller squares by drawing lines
the set
is equivalent to the bottom left and top right squares. Thus, the perimeter of the set
is equivalent to
~SMO_Team