Difference between revisions of "2025 SSMO Speed Round Problems/Problem 7"
(→Solution) |
m (→Solution) |
||
Line 11: | Line 11: | ||
<LI>If <math>y=0</math>, then <math>\tfrac{\varphi(5^{y+1})}{\varphi(5^{y})} = 4</math>; if <math>y>0</math>, then <math>\tfrac{\varphi(5^{y+1})}{\varphi(5^{y})} = \tfrac{5^{y}\varphi(5)}{5^{y-1}\varphi(5)} = 5</math>.</LI> | <LI>If <math>y=0</math>, then <math>\tfrac{\varphi(5^{y+1})}{\varphi(5^{y})} = 4</math>; if <math>y>0</math>, then <math>\tfrac{\varphi(5^{y+1})}{\varphi(5^{y})} = \tfrac{5^{y}\varphi(5)}{5^{y-1}\varphi(5)} = 5</math>.</LI> | ||
<LI>If <math>z=0</math>, then <math>\tfrac{\varphi(7^{z})}{\varphi(7^{z+1})} = \tfrac{1}{6}</math>; if <math>z>0</math>, then <math>\tfrac{\varphi(7^{z})}{\varphi(7^{z+1})} = \tfrac{7^{z-1}\varphi(7)}{7^{z}\varphi(7)} = \tfrac{1}{7}</math>.</LI></UL> | <LI>If <math>z=0</math>, then <math>\tfrac{\varphi(7^{z})}{\varphi(7^{z+1})} = \tfrac{1}{6}</math>; if <math>z>0</math>, then <math>\tfrac{\varphi(7^{z})}{\varphi(7^{z+1})} = \tfrac{7^{z-1}\varphi(7)}{7^{z}\varphi(7)} = \tfrac{1}{7}</math>.</LI></UL> | ||
− | Thus, the sum of all possible values of <math>\tfrac{\varphi(a)}{\varphi(b)}</math> is<cmath>(4+8)(\tfrac{1}{6}+\tfrac{1}{9})(4+5)(\tfrac{1}{6}+\tfrac{1}{7}) = \ | + | Thus, the sum of all possible values of <math>\tfrac{\varphi(a)}{\varphi(b)}</math> is<cmath>(4+8)(\tfrac{1}{6}+\tfrac{1}{9})(4+5)(\tfrac{1}{6}+\tfrac{1}{7}) = \tfrac{65}{7}.</cmath>We extract <math>65+7 = \boxed{72}</math>. |
~Sedro | ~Sedro |
Revision as of 15:02, 10 September 2025
Problem
Positive integers and
satisfy
. The sum of all possible values of
is
where
and
are relatively prime positive integers. Find
.
Solution
Let and
, where
,
,
, and
are all nonnegative integers and
is a positive integer not divisible by any of
,
,
, and
. Then,
Now, we determine the possible values of each factor on the right hand side based on the values of
,
,
, and
.
- If
, then
; if
, then
.
- If
, then
; if
, then
.
- If
, then
; if
, then
.
- If
, then
; if
, then
.
Thus, the sum of all possible values of is
We extract
.
~Sedro