Difference between revisions of "2025 SSMO Speed Round Problems/Problem 7"
m (→Solution) |
m (→Problem) |
||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | Positive integers <math>a</math> and <math>b</math> satisfy <math>63a = 40b</math>. The sum of all possible values of <math>\tfrac{\varphi(a)}{\varphi(b)}</math> is <math>\ | + | Positive integers <math>a</math> and <math>b</math> satisfy <math>63a = 40b</math>. The sum of all possible values of <math>\tfrac{\varphi(a)}{\varphi(b)}</math> is <math>\tfrac{m}{n},</math> where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n</math>. |
==Solution== | ==Solution== |
Latest revision as of 15:13, 10 September 2025
Problem
Positive integers and
satisfy
. The sum of all possible values of
is
where
and
are relatively prime positive integers. Find
.
Solution
Let and
, where
,
,
, and
are all nonnegative integers and
is a positive integer not divisible by any of
,
,
, and
. Then,
Now, we determine the possible values of each factor on the right hand side based on the values of
,
,
, and
.
- If
, then
; if
, then
.
- If
, then
; if
, then
.
- If
, then
; if
, then
.
- If
, then
; if
, then
.
Thus, the sum of all possible values of is
We extract
.
~Sedro