Difference between revisions of "2023 CEMC Cayley Problems/Problem 1"

(Created page with "==Problem== What is the value of <math>\frac{1}{1} + \frac{2}{2} + \frac{3}{3}</math>? <math> \text{ (A) }\ 1 \qquad\text{ (B) }\ 0 \qquad\text{ (C) }\ 3 \qquad\text{ (D) }\...")
 
 
Line 8: Line 8:
 
<math>\frac{1 \times 6}{1 \times 6} + \frac{2 \times 3}{2 \times 3} + \frac{3 \times 2}{3 \times 2}</math>
 
<math>\frac{1 \times 6}{1 \times 6} + \frac{2 \times 3}{2 \times 3} + \frac{3 \times 2}{3 \times 2}</math>
  
<math>=\frac{6}{6} + \frac{6}{6} + \frac{6}{6} = \frac{18}{6} = 3</math>
+
<math>=\frac{6}{6} + \frac{6}{6} + \frac{6}{6} = \frac{18}{6} = \boxed {\textbf {(C) } 3}</math>
  
 
~anabel.disher
 
~anabel.disher
Line 14: Line 14:
 
If <math>x \neq 0</math>, then <math>\frac{x}{x} = \frac{x \div x}{x \div x} = \frac{1}{1} = 1</math>. Thus, we have:
 
If <math>x \neq 0</math>, then <math>\frac{x}{x} = \frac{x \div x}{x \div x} = \frac{1}{1} = 1</math>. Thus, we have:
  
<math>1 + 1 + 1 = 3</math>
+
<math>1 + 1 + 1 = \boxed {\textbf {(C) } 3}</math>
  
 
~anabel.disher
 
~anabel.disher

Latest revision as of 13:29, 11 September 2025

Problem

What is the value of $\frac{1}{1} + \frac{2}{2} + \frac{3}{3}$?

$\text{ (A) }\ 1 \qquad\text{ (B) }\ 0 \qquad\text{ (C) }\ 3 \qquad\text{ (D) }\ 9 \qquad\text{ (E) }\ 10$

Solution 1

Using the greatest common denominator, we have:

$\frac{1 \times 6}{1 \times 6} + \frac{2 \times 3}{2 \times 3} + \frac{3 \times 2}{3 \times 2}$

$=\frac{6}{6} + \frac{6}{6} + \frac{6}{6} = \frac{18}{6} = \boxed {\textbf {(C) } 3}$

~anabel.disher

Solution 2

If $x \neq 0$, then $\frac{x}{x} = \frac{x \div x}{x \div x} = \frac{1}{1} = 1$. Thus, we have:

$1 + 1 + 1 = \boxed {\textbf {(C) } 3}$

~anabel.disher