Difference between revisions of "2023 WSMO Speed Round Problems/Problem 8"
(Created page with "==Problem== In regular octagon <math>ABCDEFGH</math> of sidelength <math>4,</math> quadrilaterals <math>ACEG</math> and <math>BDFH</math> are drawn. Find the square of the ar...") |
|||
(One intermediate revision by the same user not shown) | |||
Line 4: | Line 4: | ||
==Solution== | ==Solution== | ||
+ | <asy> | ||
+ | pair a = dir(112.5); | ||
+ | pair b = dir(67.5); | ||
+ | pair c = dir(22.5); | ||
+ | pair d = dir(337.5); | ||
+ | pair e = dir(292.5); | ||
+ | pair f = dir(247.5); | ||
+ | pair g = dir(202.5); | ||
+ | pair h = dir(157.5); | ||
+ | |||
+ | label("$A$", a, NW); | ||
+ | label("$B$", b, NE); | ||
+ | label("$C$", c, E); | ||
+ | label("$D$", d, E); | ||
+ | label("$E$", e, SE); | ||
+ | label("$F$", f, SW); | ||
+ | label("$G$", g, W); | ||
+ | label("$H$", h, W); | ||
+ | |||
+ | draw(a--b--c--d--e--f--g--h--cycle,black+linewidth(2)); | ||
+ | draw(a--c--e--g--cycle,blue+linewidth(1)); | ||
+ | draw(b--d--f--h--cycle,blue+linewidth(1)); | ||
+ | |||
+ | pair X = intersectionpoint(b--h,a--c); | ||
+ | dot(X); | ||
+ | label("$X$", X, S); | ||
+ | |||
+ | pair Y = intersectionpoint(b--h,a--g); | ||
+ | dot(Y); | ||
+ | label("$Y$", Y, SE); | ||
+ | </asy> | ||
+ | |||
+ | Let <math>X = BH\cap AC</math> and <math>Y = BH\cap AG</math>. Suppose that <math>BX = s</math>. From symmetry, we have <math>AX=AY=HY=s</math>. From the Pythagorean Theorem on <math>AXY,</math> we have <math>XY = s\sqrt{2}</math>. So, <cmath>BH = HY+YX+XB = s+s\sqrt{2}+s = s(2+\sqrt{2}),</cmath> meaning <cmath>XY = s\sqrt{2} = \frac{BH\sqrt{2}}{2+\sqrt{2}} = \frac{BH}{1+\sqrt{2}}</cmath> | ||
+ | From the Law of Cosines on <math>ABH</math>, we have | ||
+ | <cmath>\begin{align*} | ||
+ | BH &= \sqrt{AH^2+AB^2-2(AB)(AH)\cos(135^{\circ})}\\ | ||
+ | &= \sqrt{4^2+4^2-2(4)(4)\left(-\frac{\sqrt{2}}{2}\right)}\\ | ||
+ | &= \sqrt{32+16\sqrt{2}}. | ||
+ | \end{align*}</cmath> | ||
+ | Now, from the formula of the area of an octagon, we have | ||
+ | <cmath>\begin{align*} | ||
+ | \text{area}&=(XY)^2(2+2\sqrt{2})\\ | ||
+ | &=\frac{BH^2}{(1+\sqrt{2})^2}\cdot(2+2\sqrt{2})\\ | ||
+ | &=\frac{32+16\sqrt{2}}{(1+\sqrt{2})^2}\cdot(2+2\sqrt{2})\\ | ||
+ | &=16\sqrt{2}\cdot2 = 32\sqrt{2}, | ||
+ | \end{align*}</cmath> | ||
+ | meaning our answer is <cmath>(32\sqrt{2})^2 = \boxed{2048}.</cmath> |
Latest revision as of 12:46, 12 September 2025
Problem
In regular octagon of sidelength
quadrilaterals
and
are drawn. Find the square of the area of the overlap of the two quadrilaterals.
Solution
Let and
. Suppose that
. From symmetry, we have
. From the Pythagorean Theorem on
we have
. So,
meaning
From the Law of Cosines on
, we have
Now, from the formula of the area of an octagon, we have
meaning our answer is