Difference between revisions of "2023 WSMO Accuracy Round Problems/Problem 6"
(3 intermediate revisions by the same user not shown) | |||
Line 46: | Line 46: | ||
draw(k--l--m--n--cycle,green); | draw(k--l--m--n--cycle,green); | ||
</asy> | </asy> | ||
+ | |||
+ | The existence of point <math>O</math> implies that <math>ABCD</math> is a cyclic quadrilateral. Now, we have | ||
+ | <cmath>\begin{align*} | ||
+ | \angle(AXB) &= 180-\angle(AXD)\\ | ||
+ | &= 180-(180-\angle(XAD)-\angle(XDA))\\ | ||
+ | &= \angle(XAD)+\angle(XDA)\\ | ||
+ | &= \angle(CAD)+\angle(BDA)\\ | ||
+ | &= \frac{\overarc{CD}}{2}+\frac{\overarc{AB}}{2}\\ | ||
+ | &= \frac{\angle(COD)}{2}+\frac{\angle(AOB)}{2}\\ | ||
+ | &= \frac{120}{2} = 60^{\circ}. | ||
+ | \end{align*}</cmath> | ||
+ | So, | ||
+ | <cmath>\begin{align*} | ||
+ | KM &= KX+XM\\ | ||
+ | &= AX\cos60^{\circ}+XC\cos^{\circ}\\ | ||
+ | &= \frac{AX}{2}+\frac{XC}{2}\\ | ||
+ | &= \frac{AC}{2}. | ||
+ | \end{align*}</cmath> | ||
+ | In the same manner, we have <math>LN = \frac{BD}{2}.</math> We have | ||
+ | <cmath>\begin{align*} | ||
+ | [KLMN] &= \frac{1}{2}(KM)(LN)\sin\angle(LXK)\\ | ||
+ | &= \frac{1}{2}\left(\frac{AC}{2}\right)\left(\frac{BD}{2}\right)\sin\angle(AXB)\\ | ||
+ | &= \frac{1}{4}\left(\frac{1}{2}(AC)(BD)\sin\angle(AXB)\right)\\ | ||
+ | &= \frac{[ABCD]}{4}\implies\\ | ||
+ | [KLMN] &= \frac{20}{4} = 5\implies\\ | ||
+ | ([KLMN]) &= 5^2 = \boxed{25}. | ||
+ | \end{align*}</cmath> | ||
+ | |||
+ | ~pinkpig |
Latest revision as of 13:42, 13 September 2025
Problem
In quadrilateral there exists a point
such that
and
Let
be the foot of the perpendiculars from
to
to
to
and
to
If
find
Solution
The existence of point implies that
is a cyclic quadrilateral. Now, we have
So,
In the same manner, we have
We have
~pinkpig