Difference between revisions of "2023 WSMO Team Round Problems/Problem 8"
(Created page with "==Problem== Let <math>f(x)=\sqrt{x-\sqrt{x-\sqrt{x-\ldots}}}.</math> Find the modulo 1000 on the minimum integer <math>a</math> such <math>f(f(f(f(f(a)))))</math> is a positi...") |
|||
Line 4: | Line 4: | ||
==Solution== | ==Solution== | ||
+ | Note that | ||
+ | <cmath>\begin{align*} | ||
+ | f(x) &= \sqrt{x-f(x)}\implies\\ | ||
+ | [f(x)]^2 &= x-f(x)\implies\\ | ||
+ | x &= [f(x)]^2+f(x). | ||
+ | \end{align*}</cmath> | ||
+ | Since <math>[f(x)]^2+f(x)</math> is a strictly increasing function, the minimum value of <math>a</math> occurs when | ||
+ | <cmath>\begin{align*} | ||
+ | f(f(f(f(f(a))))) &= 1\implies\\ | ||
+ | f(f(f(f(a)))) &= 1^2+1 = 2\implies\\ | ||
+ | f(f(f(a))) &= 2^2+2 = 6\implies\\ | ||
+ | f(f(a)) &= 6^2+6 = 42\implies\\ | ||
+ | f(a) &= 42^2+42 = 1806\implies\\ | ||
+ | a &= 1806^2+1806\implies\\ | ||
+ | a&\equiv \boxed{442}\pmod{1000}. | ||
+ | \end{align*}</cmath> | ||
+ | |||
+ | ~pinkpig |
Latest revision as of 14:28, 13 September 2025
Problem
Let Find the modulo 1000 on the minimum integer
such
is a positive integer.
Solution
Note that
Since
is a strictly increasing function, the minimum value of
occurs when
~pinkpig