Difference between revisions of "2022 SSMO Speed Round Problems/Problem 5"
(Created page with "==Problem== In a parallelogram <math>ABCD</math> of dimensions <math>6\times 8,</math> a point <math>P</math> is choosen such that <math>\angle{APD}+\angle{BPC} = 180^{\circ}....") |
|||
(2 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | + | ||
+ | Let <math>ABCD</math> be a square such that <math>E</math> is on <math>AD</math> and <math>F</math> is on <math>CD.</math> If <math>AE=DF</math> and <math>\frac{[BEF]}{[ABCD]}=\frac{7}{18},</math> then the value of <math>\frac{EF^2}{BC^2}</math> can be expressed as <math>\frac mn</math>, where <math>m</math> and <math>n</math> are relatively prime positive integers. Find <math>m+n</math>. | ||
==Solution== | ==Solution== | ||
− | + | WLOG, assume <math>ABCD</math> is a unit square and let <math>AE=DF=a.</math> So, <cmath>\frac{[BEF]}{[ABCD]} = \frac{7}{18}\implies[BEF] = \frac{7}{18}.</cmath> Note that | |
+ | <cmath>\begin{align*} | ||
+ | [BEF] &= [ABCD]-[AEB]-[DEF]-[BFC]\\ | ||
+ | &= 1-\frac{AE\cdot AB}{2}-\frac{DE\cdot DF}{2}-\frac{FC\cdot BC}{2}\\ | ||
+ | &= 1-\frac{a}{2}-\frac{(1-a)(a)}{2}-\frac{1-a}{2}\\ | ||
+ | &= \frac{a^2-a+1}{2}\implies\\ | ||
+ | \frac{a^2-a+1}{2}&=\frac{7}{18}\implies\\ | ||
+ | a^2-a &= -\frac{2}{9}. | ||
+ | \end{align*}</cmath> | ||
+ | Now, | ||
+ | <cmath>\begin{align*} | ||
+ | EF^2 &= DE^2+DF^2\\ | ||
+ | &= (1-a)^2+a^2\\ | ||
+ | &= 2a^2-2a+1\\ | ||
+ | &= -2\left(\frac{2}{9}\right)+1\\ | ||
+ | &= \frac{5}{9}\implies\\ | ||
+ | \frac{EF^2}{BC^2} &= EF^2 = \frac{5}{9}\implies5+9 = \boxed{14}. | ||
+ | \end{align*}</cmath> | ||
+ | |||
+ | ~pinkpig |
Latest revision as of 18:17, 13 September 2025
Problem
Let be a square such that
is on
and
is on
If
and
then the value of
can be expressed as
, where
and
are relatively prime positive integers. Find
.
Solution
WLOG, assume is a unit square and let
So,
Note that
Now,
~pinkpig