Difference between revisions of "2023 SSMO Relay Round 1 Problems"
Line 7: | Line 7: | ||
==Problem 2== | ==Problem 2== | ||
− | Let <math>T=TNYWR</math>. Let <math>a_0 = 3, a_1 = 1, a_2 = | + | Let <math>T=TNYWR</math>. Let <math>a_0 = 3, a_1 = 1, a_2 = T</math>, and let <math>a_n = a_{n-1} - \frac{a_{n-3}}{8}</math> for <math>n \ge3.</math> Find <cmath>\sum_{i=0}^\infty a_i.</cmath> |
[[2023 SSMO Relay Round 1 Problems/Problem 2|Solution]] | [[2023 SSMO Relay Round 1 Problems/Problem 2|Solution]] | ||
Line 14: | Line 14: | ||
Let <math>T=TNYWR</math>. Find the number of solutions to the equation | Let <math>T=TNYWR</math>. Find the number of solutions to the equation | ||
− | <cmath>\sec^{ | + | <cmath>\sec^{T} (Tx) - \tan^{T}(Tx) = 1</cmath> |
such <math>0 \le x \le \pi</math> | such <math>0 \le x \le \pi</math> | ||
[[2023 SSMO Relay Round 1 Problems/Problem 3|Solution]] | [[2023 SSMO Relay Round 1 Problems/Problem 3|Solution]] |