Difference between revisions of "2023 SSMO Relay Round 1 Problems/Problem 2"
(→Solution) |
|||
(One intermediate revision by one other user not shown) | |||
Line 1: | Line 1: | ||
==Problem== | ==Problem== | ||
− | Let <math>T=TNYWR</math>. Let <math>a_0 = 3, a_1 = 1, a_2 = | + | Let <math>T=TNYWR</math>. Let <math>a_0 = 3, a_1 = 1, a_2 = T</math>, and let <math>a_n = a_{n-1} - \frac{a_{n-3}}{8}</math> for <math>n\ge 3.</math> Find <cmath>\sum_{i=0}^\infty a_i.</cmath> |
==Solution== | ==Solution== | ||
+ | We have <math>T = 2022</math>. Let | ||
+ | <cmath>\begin{align*} | ||
+ | S = \sum_{i=0}^\infty a_i &= a_0+a_1+a_2+\sum_{i=3}^\infty a_i\\ | ||
+ | &= 3+1+2022+\sum_{i=3}^\infty \left(a_{i-1}-\frac{a_{i-3}}{8}\right)\\ | ||
+ | &= 2026+\sum_{i=3}^{\infty}a_{i-1}-\sum_{i=3}^\infty \frac{a_{i-3}}{8}\\ | ||
+ | &= 2026+\sum_{i=2}^\infty a_i-\frac{\sum_{i=0}a_i}{8}\\ | ||
+ | &= 2026+\left(\left[ \sum_{i=0}^\infty a_i \right]-a_0-a_1\right)-\frac{S}{8}\\ | ||
+ | &= 2026+(S-3-1)-\frac{S}{8}\\ | ||
+ | &= 2022+\frac{7S}{8}.\\ | ||
+ | \end{align*}</cmath> | ||
+ | We have | ||
+ | <cmath>\begin{align*} | ||
+ | S &= 2022+\frac{7S}{8}\implies\\ | ||
+ | \frac{S}{8} &= 2022\implies\\ | ||
+ | S &= 8\cdot2022 = \boxed{16176}. | ||
+ | \end{align*}</cmath> | ||
+ | |||
+ | ~pinkpig |
Latest revision as of 17:15, 15 September 2025
Problem
Let . Let
, and let
for
Find
Solution
We have . Let
We have
~pinkpig