Difference between revisions of "Kepler triangle"
(→Circles of the aureate triangle) |
(→Bevan point’s problems) |
||
(13 intermediate revisions by the same user not shown) | |||
Line 115: | Line 115: | ||
4. Let <math>N</math> be the foot from <math>M</math> to <math>GI_A.</math> Then <math>MN = MF = MD_0 = 1.</math> | 4. Let <math>N</math> be the foot from <math>M</math> to <math>GI_A.</math> Then <math>MN = MF = MD_0 = 1.</math> | ||
− | 5. Let <math>K = | + | 5. Let <math>K = I_AI_C \cap MG.</math> Then <math>D_0, K,</math> and <math>F</math> lies on circle <math>\gamma</math> with diameter <math>MI_C.</math> |
+ | Point <math>K \in \Omega.</math> | ||
<i><b>Proof</b></i> | <i><b>Proof</b></i> | ||
+ | |||
+ | 1. <math>BD' = \phi^2 = BD_0, \angle BI_CD_0 = \beta \implies r_C = \frac{BD'}{\tan \beta } = \sqrt{\phi} = AM \implies</math> distance from <math>I_C(I_B)</math> to <math>BC</math> is equal <math>AM \implies I_CA ||BC \implies A,I_B,I_C</math> are collinear. | ||
+ | <math>\angle AI_CD' = \alpha \implies AI_C = \frac{r_C}{\cos \alpha} = 1 = AB \implies A</math> is the center of the circle <math>BCI_BI_C.</math> | ||
+ | |||
+ | 2. <math>\angle BI_AM = \beta \implies r_A = \frac{BM}{\tan \beta} = \frac{1}{\sqrt {\phi}}.</math> | ||
+ | |||
+ | <math>D'I_C \perp AB, D'M \perp AB \implies</math> points <math>M, D',</math> and <math>I_C</math> are collinear. | ||
+ | |||
+ | <math>\angle BMI_C = \alpha \implies MI_C = \frac{r_C}{\sin \alpha} = \frac{1}{\sqrt {\phi}} = MI_A \implies M</math> is the center of the circle <math>\Theta = \odot I_AI_BI_C.</math> | ||
+ | |||
+ | 3. <math>GL \perp AM, BC \perp AM \implies GL||BC, L \in MI_A \implies \angle MGL = \beta \implies</math> <cmath>ML = GL \tan \beta = \phi \sqrt {\phi} \implies OM + ML = R.</cmath> | ||
+ | |||
+ | 4. <math>MI_AGI_C</math> is rhomb with <math>\angle MI_CD_0 = 2 \beta, \angle MNI_A = 90^\circ MN = r_A \sin 2 \beta = 1.</math> | ||
+ | <cmath>BD' = ED' \implies \angle BMD' = \angle EMD', FI_C = D_0I_C \implies</cmath> | ||
+ | <cmath>\triangle MFI_C = \triangle MD_0I_C \implies MF = MD_0 = MN.</cmath> | ||
+ | |||
+ | 5. <math>\angle MD_0I_C = 90^\circ = \angle MKI_C = \angle MFI_C.</math> | ||
+ | In triangle <math>\triangle KMO</math> | ||
+ | <cmath>\angle KMO = 90^\circ + \beta, KM = MI_A \sin \beta = \sqrt {\frac {\phi}{2}}, | ||
+ | OM = \frac { \phi^2 \cdot \sqrt{\phi}}{2}.</cmath> | ||
+ | |||
+ | <cmath>OK^2 = KM^2 + MO^2 - 2 KM \cdot MO \cdot \cos (90^\circ + \beta) =</cmath> | ||
+ | <cmath>= \frac {\phi}{2} + \frac{\phi^5}{4} - 2 \frac{\phi^2 \sqrt{\phi}}{2} \frac{\sqrt{\phi}}{\sqrt{2}} \cdot (-\frac{\phi}{\sqrt{2}}) = \frac{1}{4 \phi} = R^2.</cmath> | ||
+ | '''vladimir.shelomovskii@gmail.com, vvsss''' | ||
+ | |||
+ | ==Rhombs in the aureate triangle== | ||
+ | [[File:Rhombs.png|300px|right]] | ||
+ | Let <math>F_0</math> be the foot from <math>F</math> to <math>BC, L' = I_AI_C \cap GL,</math> | ||
+ | |||
+ | <math>G_1</math> is symmetrical to <math>G</math> with respect <math>AM.</math> | ||
+ | |||
+ | Prove that <math>I_CMI_AG, GBML', ID'BF_0</math> are similar rhombs, <math>MI_A = \sqrt {\varphi}, BM = \phi, BD' = \phi^2.</math> | ||
+ | |||
+ | <i><b>Proof</b></i> | ||
+ | |||
+ | <math>MI_C = MI_A = GI_A = 2R = AL = GI_C = \sqrt {\varphi}</math> | ||
+ | <math>\implies MI_AGI_C</math> is the rhomb. | ||
+ | |||
+ | <cmath>GI_C \perp BC, MI_C \perp AB \implies</cmath> | ||
+ | <cmath>\angle MI_CG = \angle ABC = 2 \beta.</cmath> | ||
+ | |||
+ | <math>B</math> is the orthocenter of <math>\triangle I_CGM,</math> | ||
+ | |||
+ | <math>L'</math> is the orthocenter of <math>\triangle I_AGM \implies</math> | ||
+ | |||
+ | <math>BM = BG = GL' = ML' \implies MBGL'</math> is the rhomb with side <math>BM = \phi.</math> | ||
+ | |||
+ | <math>\angle FMB = 2 \alpha \implies MF_0 = MF \cos 2 \alpha = \phi^3 \implies</math> | ||
+ | |||
+ | <math>BF_0 = BM - MF_0 = \phi - \phi^3 = \phi^2 = BD' = DI, BF || D'I \implies ID'BF_0</math> is the rhomb. | ||
+ | |||
==Circles of the aureate triangle== | ==Circles of the aureate triangle== | ||
− | [[File:Aureate | + | [[File:Aureate circles2.png|350px|right]] |
Prove that: | Prove that: | ||
− | 1. | + | 1. Circle <math>\nu</math> centered at <math>D</math> with radius <math>FD</math> is tangent to <math>BC</math> and <math>\omega_B.</math> |
+ | |||
+ | 2. Circle <math>\mu</math> with diameter <math>D'L</math> is tangent to lines <math>D_0G'</math> and <math>NL.</math> This circle contain points <math>I, L, L', B, D'.</math> | ||
+ | |||
+ | 3. Let <math>R = BI \cap FD, R'</math> be the point of <math>NM</math> such that <math>RR' || BC.</math> Then <math>R'</math> lies on circles <math>\mu, \nu, </math> and circle with diameter <math>LD_{01},</math> lines <math>LG', D'D_{01}, FH, DG_1, F_0D'_1.</math> | ||
+ | |||
+ | <i><b>Proof</b></i> | ||
+ | |||
+ | 1. <math>FF_0 = MF \sin 2 \alpha = 2 \phi \sqrt{\phi},</math> | ||
+ | <math>DF_0 = HM = \phi \sqrt{\phi}, DF \perp BC \implies \nu</math> is tangent to <math>BC.</math> | ||
+ | <cmath>D_{01} = \omega_B \cap BC \implies I_BD_{01} = \sqrt{\phi}</cmath> | ||
+ | <math>F_0D_{01} = F_0M + MD_{01} = \phi^3 + 1 = 2 \phi = 2 \sqrt{DF_0 \cdot I_BD_{01}}</math> so <math>\nu</math> is tangent to <math>\omega_B.</math> | ||
+ | |||
+ | 2. <math>D'M = LM = NG = GD_0 = \phi \sqrt{\phi},</math> | ||
+ | <cmath>I_CM = I_AM = I_AG = GI_C = r_A=\sqrt{\varphi} = \frac{1}{\sqrt{\phi}},</cmath> | ||
+ | <cmath>I_CI_A = 2 r_A \cos \beta = \sqrt{2} \varphi \implies D'L = \frac{I_AI_C \cdot ML}{r_A} = \sqrt{2} \phi,</cmath> | ||
+ | <math>D'L || D_0N || I_AI_C \perp GM || D'D_0 ||NL \implies D'D_0</math> and <math>LN</math> are tangent line to <math>\mu.</math> | ||
+ | |||
+ | Let point <math>Q</math> be the midpoint of <math>D'L.</math> Then <math>Q</math> lies on <math>GM.</math> | ||
+ | |||
+ | <math>\angle MD_{01}L = \arctan{\frac {ML}{MD_{01}}} = \beta = \arcsin{\frac {ND_0}{2 MD_{01}}} \implies </math> points <math>N,L,</math> and <math>D_{01}</math> are collinear. | ||
+ | |||
+ | Points <math>B, I,</math> and <math>I_B</math> are collinear (lie on bisector of <math>\angle ABC), \frac{DD'}{BD'} = \frac{DG'}{I_BG'} \implies D'G' || BI.</math> | ||
+ | <cmath>\angle D'D_0M = \beta = \angle HD_0M = \angle (D'G')(BC) \implies</cmath> | ||
+ | points <math>D_0, D', H,</math> and <math>G'</math> are collinear. | ||
+ | <cmath>D'I = LL', D'I || LL', D'I \perp IL \implies</cmath> | ||
+ | <math>D'ILL'</math> is the rectangle, so points <math>I</math> and <math>L'</math> belong <math>\mu.</math> | ||
+ | <math>BM = \phi, \angle BMQ = \beta, QM = ML \sin \beta = \phi \sqrt{\frac{\phi}{2}}\implies QB = \frac{\phi}{\sqrt{2}} \implies B \in \mu.</math> | ||
+ | |||
+ | 3. <math>RF_0 = BF_0 \tan \beta = \phi^3 \sqrt {\phi}, \angle R'MC = \angle ML'L = 2 \beta \implies</math> | ||
+ | <cmath>R'M = \frac{RF_0}{\sin 2 \beta} = \phi^3 = F_0M \implies \angle F_0R'M = \angle R'F_0M = \beta = \angle F_0R'R.</cmath> | ||
+ | We use <math>\triangle FD'_1M</math> where <math>CD'_1 = BD' = \phi^2, CF_0 = F_0M + MC = \phi^3 + \phi = 3\phi - 1,</math> | ||
+ | |||
+ | <math>\angle ACB = 2 \beta</math> and get <math>\angle D'_1F_0C = \beta,</math> so points <math>D'_1,F_0, </math> and <math>R'</math> are collinear. | ||
+ | |||
+ | <cmath>F_0R' || BR \perp FH, F_0R' = \frac{F_0R}{\sin \beta} = \phi^2 \sqrt{2 \phi}.</cmath> | ||
+ | <cmath>\angle FF_0R' = 90^\circ - \beta, FF_0 = 2 \phi \sqrt{\phi} \implies F_0R' = FF_0 \cos FF_0R' \implies R' \in FH.</cmath> | ||
+ | <cmath>I_CF = I_CD_0 = I_AN = I_AN_1, \angle FI_CB = 3 \beta = \angle BI_AN_1 \implies FN_1 || I_AI_C.</cmath> | ||
+ | <cmath>FH \perp HD', DD' \perp I_AI_C \implies FH || I_AI_C \implies</cmath> points <math>F, H, R',</math> and <math>N_1</math> are collinear. | ||
+ | |||
+ | <cmath>D'R = BD' \cdot \tan \beta = \phi^3 \sqrt{\phi}, D'M = BD' \cdot \tan 2 \beta = \phi \sqrt{\phi},</cmath> | ||
+ | <cmath>MD_{01} = 1, RR' = \phi^2, RR' || MD_{01} \implies R' \in D'D_{01}.</cmath> | ||
+ | <cmath>GG_1 = D_0D_{01} = 2, GB = MB = DB = \phi, \angle DGG_1 = 2 \beta \implies</cmath> | ||
+ | <cmath>G_1D \perp AB, ID \perp AB \implies \angle IDR = 2 \beta.</cmath> | ||
+ | <cmath>DR = DF_0 - RF_0 = BF_0 (\tan 2 \beta - \tan \beta) = \phi^2 \sqrt{\phi}, \cot \angle R'DR = \frac{DR}{RR'} = \sqrt{\phi} \implies</cmath> | ||
+ | <math>\angle R'DR = 2 \beta \implies </math> points <math>D, I, R',</math> and <math>G_1</math> are collinear. | ||
+ | <cmath>DR' = \frac {DR}{\cos 2 \beta} = \frac{ \phi^2 \sqrt{\phi}}{\phi} = DF_0 \implies R' \in \nu.</cmath> | ||
+ | <cmath>I_BG_1 = I_BD = I_BM = \frac{1}{\sqrt{\phi}}, DG_1^2 = (DF_0+ML)^2+(G_1L+F_0M)^2 = 4\phi, DG_1 = 2\sqrt{\phi} \implies</cmath> | ||
+ | <cmath>\angle G'DR' = 2 \beta = \angle R'DF_0 \implies \angle F_0R'G = 2 \angle DR'G' = 180^\circ - 2 \beta,</cmath> | ||
+ | <cmath>F_0R' = \phi^2 \sqrt{2 \phi}, F_0L = \phi^2 \sqrt{2}, F_0R' \perp D'L \implies</cmath> | ||
+ | <math>\angle F_0R'L = 2 \beta \implies</math> points <math>G', R',</math> and <math>L</math> are collinear. | ||
+ | |||
+ | <math>\angle LR'D_{01} = \alpha + 2 \beta = 90^\circ \implies R'</math> lies on the circle with diameter <math>L_{01}.</math> | ||
+ | <cmath>\angle D'R'L = \angle D'R'F_0 + \angle LR'F0 = 90^\circ \implies</cmath> | ||
+ | <math>R'</math> lies on the circle with diameter <math>D'L.</math> | ||
+ | |||
+ | '''vladimir.shelomovskii@gmail.com, vvsss''' | ||
+ | ==Collinearity== | ||
+ | [[File:Collinearity tangent.png|400px|right]] | ||
+ | 1. Collinear groups of point are <math>N,U,X,X',D,</math> | ||
+ | |||
+ | <math>M,R,X',D', I_C</math> | ||
+ | |||
+ | <math>T',X,R, R',</math> | ||
+ | |||
+ | <math>D_0,J,T',I,</math> | ||
+ | |||
+ | <math>D',R',V_1,D_{01}</math>,... | ||
− | 2. | + | 2. <math>CI_C</math> is tangent to circle <math>\odot DIL.</math> |
− | 3. <math> | + | 3. <math>J</math> is the common point of <math>\omega_C, \odot FG'R', \odot DIL.</math> |
− | 4. | + | 4. <math>CI_C</math> is tangent to <math>\odot DIL</math> at point <math>I.</math> |
− | 5. <math> | + | 5. <math>YY'</math> is the diameter of <math>\odot DIL.</math> |
− | < | + | One can prove these using method shown before. |
+ | ==Bevan point’s problems== | ||
+ | [[File:Bevan.png|300px|right]] | ||
+ | [[File:Sparrows lemma.png|300px|right]] | ||
+ | |||
+ | The Bevan point, named after Benjamin Bevan, is a center of the Bevan circle, that is the circle through the centers of the three excircles of a triangle. | ||
+ | |||
+ | Let Bevan point <math>Q</math> lies on side <math>BC</math> of the triangle <math>ABC.</math> Find the ratio <math>\frac{BC}{AB+AC}</math> if <math>BQ : QC</math> is: | ||
+ | |||
+ | 1. <math>1 : 1.</math> | ||
+ | |||
+ | 2. <math>6+\sqrt{15} : 6 - \sqrt{15}.</math> | ||
− | + | <i><b>Solution</b></i> | |
− | + | Denote <math>I,I_A, I_B, I_C</math> the incenter and A-,B-,C-excenters of <math>\triangle ABC, A',B',C'</math> the midpoints of sides of <math>\triangle I_AI_BI_C, A'' -</math> the midpoint of <math>II_A, Q</math> the Bevan point, <math>O</math> the circumcenter. | |
− | < | ||
− | |||
− | <math> | ||
− | + | Circumcircle <math>\Omega</math> of <math>\triangle ABC</math> is the Euler circle of <math>\triangle I_AI_BI_C,</math> so <math>A',B',C',A''</math> lies at <math>\Omega, A'A''</math> is the diameter of <math>\Omega, AA'' \perp I_BI_C.</math> | |
− | <math> | ||
− | <math> | ||
− | + | 1. <math>QA' \perp I_BI_C \implies A = A' \implies AB = AC.</math> | |
− | |||
− | |||
− | |||
− | <math> | + | Let <math>D</math> be the foot from <math>Q</math> to <math>AB \implies D \in \odot BB'QD.</math> |
− | <math> | ||
− | + | <math>AB' = CB' \implies AD = QC</math> ([[Sparrow’s lemmas | Sparrow's Lemma 1]]). | |
− | |||
− | + | <math>\triangle BDQ \sim \triangle BQA \implies \frac {BD}{BQ} = \frac {BQ}{AB} = \frac {BQ}{BD + BQ} \implies \triangle ABC</math> is the aureate triangle. | |
− | |||
− | |||
− | <math> | + | 2. <math>2Rr = 2 \frac{abc}{4S} \cdot \frac{2S}{a+b+c} = \frac{abc}{a+b+c},</math> where <math>S</math> is the area of <math>\triangle ABC.</math> |
− | < | + | [[File:3 to 4.png|300px|right]] |
− | + | <cmath>OI^2 = R^2 - 2Rr = R^2 - \frac{abc}{a+b+c}.</cmath> | |
− | + | <cmath>OM^2 = OB^2 - BM^2 = R^2 - a^2/4,</cmath> | |
+ | <cmath>OM^2 = OQ^2 - MQ^2 = OI^2 - MQ^2 = R^2 - \frac{abc}{a+b+c} - MQ^2,</cmath> | ||
+ | <cmath>MQ^2 = 5a^2/48 \implies 7(a+b+c) = 48bc,</cmath> | ||
+ | <cmath>bc \sin \alpha = (a+b+c)r \implies \sin \alpha = \frac{4 \sqrt{3}}{7} \implies \cos\alpha = \frac{1}{7}.</cmath> | ||
+ | <cmath>a^2 = b^2+c^2 - 2bc/7 = (b+c)^2 - 16bc/7 = (b+c)^2 - a(a+b+c)/3 \implies</cmath> | ||
+ | <cmath>b+c-a = a/3, 3(b+c) = 4a \implies \frac{BC}{AB+AC} =0.75.</cmath> |
Latest revision as of 15:32, 16 September 2025
A Kepler triangle is a special right triangle with edge lengths in geometric progression. The progression can be written: or approximately
When an isosceles triangle is formed from two Kepler triangles, reflected across their long sides, it has the maximum possible inradius among all isosceles triangles having legs of a given size. Most of the properties described below were discovered by the famous Russian mathematician Lev Emelyanov, who in his works called this isosceles triangle ”aureate triangle”.
Contents
- 1 Definition of doubled Kepler triangle
- 2 Sides and angles of doubled Kepler triangle
- 3 Construction of a Kepler triangle
- 4 Segments of aureate triangle
- 5 Collinearity in aureate triangle
- 6 Excircles of the aureate triangle
- 7 Rhombs in the aureate triangle
- 8 Circles of the aureate triangle
- 9 Collinearity
- 10 Bevan point’s problems
Definition of doubled Kepler triangle
Let’s define the doubled Kepler triangle as triangle which has the maximum possible inradius among all isosceles triangles having legs of a given size.
Let the incircle of an isosceles be the incenter) touch the side
at point
inradius).
We need to find minimum of
Let us differentiate this function with respect
to taking into account that
Therefore
Let
Sides and angles of doubled Kepler triangle
Let’s define the doubled Kepler triangle as triangle which has the maximum possible inradius among all isosceles triangles having legs of a given size.
Let the incircle of an isosceles touch the sides
and
at points
and
We need to find minimum of
Let us differentiate this function with respect
to taking into account that
Therefore
Let
vladimir.shelomovskii@gmail.com, vvsss
Construction of a Kepler triangle
Let be the midpoint of the base
Point
The point is the intersection of a circle with diameter
and a circle centered at point
and radius
, which is located in the half-plane
where there is no point
.
The bisector of the obtuse angle between lines and
intersects bisector
at the vertex
of the Kepler triangle.
The construction is based on the fact that
Segments of aureate triangle
We call the doubled Kepler triangle the aureate triangle according to Lev Emelyanov.
Let and
be the incenter, C-excenter, ortocenter, circumcenter, and midpoint
of aureate
Let be the foots from
to
Find segments, prove
Proof
Collinearity in aureate triangle
We define Let reflections of
wrt
be points
Let
be the point on incircle opposite
Prove:
1. Points and points
are collinear.
2. Points are collinear.
3.
4.
Proof
1. The distance from to
is
is the midline of trapezium
2. The distance from to
is
3.
4. midline of
Excircles of the aureate triangle
Let centered at points
respectively be the excircles of aureate
Prove that:
1. Let and
be the point of tangency of
with
and
respectively. Then radius
is the center of the circle
2. Let be the point of tangency of
and
Then radii
is the center of the circle
3. Let be the foot from
to
Then
is tangent to
4. Let be the foot from
to
Then
5. Let Then
and
lies on circle
with diameter
Point
Proof
1. distance from
to
is equal
are collinear.
is the center of the circle
2.
points
and
are collinear.
is the center of the circle
3.
4. is rhomb with
5.
In triangle
vladimir.shelomovskii@gmail.com, vvsss
Rhombs in the aureate triangle
Let be the foot from
to
is symmetrical to
with respect
Prove that are similar rhombs,
Proof
is the rhomb.
is the orthocenter of
is the orthocenter of
is the rhomb with side
is the rhomb.
Circles of the aureate triangle
Prove that:
1. Circle centered at
with radius
is tangent to
and
2. Circle with diameter
is tangent to lines
and
This circle contain points
3. Let be the point of
such that
Then
lies on circles
and circle with diameter
lines
Proof
1.
is tangent to
so
is tangent to
2.
and
are tangent line to
Let point be the midpoint of
Then
lies on
points
and
are collinear.
Points and
are collinear (lie on bisector of
points
and
are collinear.
is the rectangle, so points
and
belong
3.
We use
where
and get
so points
and
are collinear.
points
and
are collinear.
points
and
are collinear.
points
and
are collinear.
lies on the circle with diameter
lies on the circle with diameter
vladimir.shelomovskii@gmail.com, vvsss
Collinearity
1. Collinear groups of point are
,...
2. is tangent to circle
3. is the common point of
4. is tangent to
at point
5. is the diameter of
One can prove these using method shown before.
Bevan point’s problems
The Bevan point, named after Benjamin Bevan, is a center of the Bevan circle, that is the circle through the centers of the three excircles of a triangle.
Let Bevan point lies on side
of the triangle
Find the ratio
if
is:
1.
2.
Solution
Denote the incenter and A-,B-,C-excenters of
the midpoints of sides of
the midpoint of
the Bevan point,
the circumcenter.
Circumcircle of
is the Euler circle of
so
lies at
is the diameter of
1.
Let be the foot from
to
is the aureate triangle.
2. where
is the area of