Difference between revisions of "2001 AMC 10 Problems/Problem 5"
Pidigits125 (talk | contribs) (→Solution) |
m (→Problem) |
||
(8 intermediate revisions by 8 users not shown) | |||
Line 1: | Line 1: | ||
== Problem == | == Problem == | ||
− | How many of the twelve pentominoes pictured below at least one line of symmetry? | + | How many of the twelve pentominoes pictured below have at least one line of symmetry? |
− | <math> \textbf{(A)} | + | <asy> |
+ | unitsize(5mm); | ||
+ | defaultpen(linewidth(1pt)); | ||
+ | draw(shift(2,0)*unitsquare); | ||
+ | draw(shift(2,1)*unitsquare); | ||
+ | draw(shift(2,2)*unitsquare); | ||
+ | draw(shift(1,2)*unitsquare); | ||
+ | draw(shift(0,2)*unitsquare); | ||
+ | draw(shift(2,4)*unitsquare); | ||
+ | draw(shift(2,5)*unitsquare); | ||
+ | draw(shift(2,6)*unitsquare); | ||
+ | draw(shift(1,5)*unitsquare); | ||
+ | draw(shift(0,5)*unitsquare); | ||
+ | draw(shift(4,8)*unitsquare); | ||
+ | draw(shift(3,8)*unitsquare); | ||
+ | draw(shift(2,8)*unitsquare); | ||
+ | draw(shift(1,8)*unitsquare); | ||
+ | draw(shift(0,8)*unitsquare); | ||
+ | draw(shift(6,8)*unitsquare); | ||
+ | draw(shift(7,8)*unitsquare); | ||
+ | draw(shift(8,8)*unitsquare); | ||
+ | draw(shift(9,8)*unitsquare); | ||
+ | draw(shift(9,9)*unitsquare); | ||
+ | draw(shift(6,5)*unitsquare); | ||
+ | draw(shift(7,5)*unitsquare); | ||
+ | draw(shift(8,5)*unitsquare); | ||
+ | draw(shift(7,6)*unitsquare); | ||
+ | draw(shift(7,4)*unitsquare); | ||
+ | draw(shift(6,1)*unitsquare); | ||
+ | draw(shift(7,1)*unitsquare); | ||
+ | draw(shift(8,1)*unitsquare); | ||
+ | draw(shift(6,0)*unitsquare); | ||
+ | draw(shift(7,2)*unitsquare); | ||
+ | draw(shift(11,8)*unitsquare); | ||
+ | draw(shift(12,8)*unitsquare); | ||
+ | draw(shift(13,8)*unitsquare); | ||
+ | draw(shift(14,8)*unitsquare); | ||
+ | draw(shift(13,9)*unitsquare); | ||
+ | draw(shift(11,5)*unitsquare); | ||
+ | draw(shift(12,5)*unitsquare); | ||
+ | draw(shift(13,5)*unitsquare); | ||
+ | draw(shift(11,6)*unitsquare); | ||
+ | draw(shift(13,4)*unitsquare); | ||
+ | draw(shift(11,1)*unitsquare); | ||
+ | draw(shift(12,1)*unitsquare); | ||
+ | draw(shift(13,1)*unitsquare); | ||
+ | draw(shift(13,2)*unitsquare); | ||
+ | draw(shift(14,2)*unitsquare); | ||
+ | draw(shift(16,8)*unitsquare); | ||
+ | draw(shift(17,8)*unitsquare); | ||
+ | draw(shift(18,8)*unitsquare); | ||
+ | draw(shift(17,9)*unitsquare); | ||
+ | draw(shift(18,9)*unitsquare); | ||
+ | draw(shift(16,5)*unitsquare); | ||
+ | draw(shift(17,6)*unitsquare); | ||
+ | draw(shift(18,5)*unitsquare); | ||
+ | draw(shift(16,6)*unitsquare); | ||
+ | draw(shift(18,6)*unitsquare); | ||
+ | draw(shift(16,0)*unitsquare); | ||
+ | draw(shift(17,0)*unitsquare); | ||
+ | draw(shift(17,1)*unitsquare); | ||
+ | draw(shift(18,1)*unitsquare); | ||
+ | draw(shift(18,2)*unitsquare);</asy> | ||
+ | |||
+ | <math>\textbf{(A) } 3 \qquad\textbf{(B) } 4 \qquad\textbf{(C) } 5 \qquad\textbf{(D) } 6 \qquad\textbf{(E) } 7</math> | ||
== Solution == | == Solution == | ||
− | + | [[File:Pentonimoes.gif]] | |
The ones with lines over the shapes have at least one line of symmetry. Counting the number of shapes that have line(s) on them, | The ones with lines over the shapes have at least one line of symmetry. Counting the number of shapes that have line(s) on them, | ||
we find <math> \boxed{\textbf{(D)}\ 6} </math> pentominoes. | we find <math> \boxed{\textbf{(D)}\ 6} </math> pentominoes. | ||
− | == Solution == | + | ==Video Solution by Daily Dose of Math== |
+ | |||
+ | https://youtu.be/svFpNvUUY7E?si=CloMWtqbbhBNgWy_ | ||
+ | |||
+ | ~Thesmartgreekmathdude | ||
+ | |||
+ | == See Also == | ||
+ | |||
+ | {{AMC10 box|year=2001|num-b=4|num-a=6}} | ||
+ | {{MAA Notice}} |
Latest revision as of 23:36, 17 September 2025
Problem
How many of the twelve pentominoes pictured below have at least one line of symmetry?
Solution
The ones with lines over the shapes have at least one line of symmetry. Counting the number of shapes that have line(s) on them,
we find pentominoes.
Video Solution by Daily Dose of Math
https://youtu.be/svFpNvUUY7E?si=CloMWtqbbhBNgWy_
~Thesmartgreekmathdude
See Also
2001 AMC 10 (Problems • Answer Key • Resources) | ||
Preceded by Problem 4 |
Followed by Problem 6 | |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
All AMC 10 Problems and Solutions |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.