Difference between revisions of "2024 AMC 12B Problems/Problem 8"
Kafuu chino (talk | contribs) (→Solution 1) |
m |
||
| (7 intermediate revisions by 3 users not shown) | |||
| Line 8: | Line 8: | ||
We have | We have | ||
\begin{align*} | \begin{align*} | ||
| − | + | \log_2x\cdot\log_3x&=2(\log_2x+\log_3x) \\ | |
| − | & | + | 1&=\frac{2(\log_2x+\log_3x)}{\log_2x\cdot\log_3x} \\ |
| − | & | + | 1&=2(\frac{1}{\log_3x}+\frac{1}{\log_2x}) \\ |
| − | & | + | 1&=2(\log_x3+\log_x2) \\ |
| − | + | \log_x6&=\frac{1}{2} \\ | |
| − | + | x^{\frac{1}{2}}&=6 \\ | |
| − | & | + | x&=36 |
\end{align*} | \end{align*} | ||
so <math>\boxed{\textbf{(C) }36}</math> | so <math>\boxed{\textbf{(C) }36}</math> | ||
| + | |||
| + | ~kafuu_chino | ||
| + | |||
| + | ==Solution 2 (Change of Base)== | ||
| + | \begin{align*} | ||
| + | \frac{\log_2x \cdot \log_3x}{\log_2x+\log_3x} &= 2 \\[6pt] | ||
| + | \log_2x \cdot \log_3x &= 2(\log_2x+\log_3x) \\[6pt] | ||
| + | \log_2x \cdot \log_3x &= 2\log_2x + 2\log_3x \\[6pt] | ||
| + | \frac{\log x}{\log 2} \cdot \frac{\log x}{\log 3} &= 2\frac{\log x}{\log 2} + 2\frac{\log x}{\log 3} \\[6pt] | ||
| + | \frac{(\log x)^2}{\log 2 \cdot \log 3} &= \frac{2\log x \cdot \log 3 + 2\log x \cdot \log 2}{\log 2 \cdot \log 3} \\[6pt] | ||
| + | (\log x)^2 &= 2\log x \cdot \log 3 + 2\log x \cdot \log 2 \\[6pt] | ||
| + | (\log x)^2 &= 2\log x(\log 2 + \log 3) \\[6pt] | ||
| + | \log x &= 2(\log 2 + \log 3) \\[6pt] | ||
| + | x &= 10^{2(\log 2 + \log 3)} \\[6pt] | ||
| + | x &= (10^{\log 2} \cdot 10^{\log 3})^2 \\[6pt] | ||
| + | x &= (2 \cdot 3)^2 = 6^2 = \boxed{\textbf{(C) }36} | ||
| + | \end{align*} | ||
| + | |||
| + | ~sourodeepdeb | ||
| + | |||
| + | ==Solution 3 (Using Variables)== | ||
| + | Let <math>a=\log_2x</math> and <math>b=\log_3x</math>. This gives us the equation <cmath>\frac{ab}{a+b}=2.</cmath> | ||
| + | |||
| + | Then, from our definitions of <math>a</math> and <math>b</math>, <math>2^a=x</math> and <math>3^b=x</math>, so <math>2^a=3^b.</math> Taking the logarithm base <math>3</math> of both sides of this equation gives us <math>\log_3 2^a=b</math>, hence <math>a \log_3 2=b.</math> | ||
| + | Now, we substitute <math>a \log_3 2</math> for <math>b</math> in the equation, which gives <cmath>\frac{a \cdot a \log_3 2}{a+a \log_3 2}=2.</cmath>Notice that we can factor out an <math>a</math> in the numerator and denominator, if <math>a \neq 0,</math> and doing so yields <cmath>\frac{a \log_3 2}{1+\log_3 2}=2.</cmath> We know that <math>1= \log_3 3,</math> so putting that in gives us <cmath>\frac{a \log_3 2}{\log_3 3+\log_3 2}=2 \implies \frac{a \log_3 2}{\log_3 6}=2.</cmath>So, <math>a=2 \cdot \frac{\log_3 6}{\log_3 2}</math>, which, using the change of base formula, is equivalent to <math>2 \cdot \log_2 6,</math> thus, <cmath>a=2 \cdot \log_2 6= \log _2 6^2= \log _2 36.</cmath> Finally, using our original definition of <math>a,</math> we have <cmath>a = \log_2 x=\log_2 36,</cmath> so <math>x=\boxed{\textbf{(C) }36}.</math> | ||
| + | |||
| + | ~hdanger | ||
| + | |||
| + | ==Video Solution 1 by TheBeautyofMath== | ||
| + | https://youtu.be/AKLPjTRPF4Q?t=539 | ||
| + | |||
| + | ~IceMatrix | ||
==See also== | ==See also== | ||
{{AMC12 box|year=2024|ab=B|num-b=7|num-a=9}} | {{AMC12 box|year=2024|ab=B|num-b=7|num-a=9}} | ||
{{MAA Notice}} | {{MAA Notice}} | ||
Latest revision as of 21:28, 6 October 2025
Contents
Problem
What value of
satisfies
Solution 1
We have
\begin{align*}
\log_2x\cdot\log_3x&=2(\log_2x+\log_3x) \\
1&=\frac{2(\log_2x+\log_3x)}{\log_2x\cdot\log_3x} \\
1&=2(\frac{1}{\log_3x}+\frac{1}{\log_2x}) \\
1&=2(\log_x3+\log_x2) \\
\log_x6&=\frac{1}{2} \\
x^{\frac{1}{2}}&=6 \\
x&=36
\end{align*}
so
~kafuu_chino
Solution 2 (Change of Base)
\begin{align*} \frac{\log_2x \cdot \log_3x}{\log_2x+\log_3x} &= 2 \\[6pt] \log_2x \cdot \log_3x &= 2(\log_2x+\log_3x) \\[6pt] \log_2x \cdot \log_3x &= 2\log_2x + 2\log_3x \\[6pt] \frac{\log x}{\log 2} \cdot \frac{\log x}{\log 3} &= 2\frac{\log x}{\log 2} + 2\frac{\log x}{\log 3} \\[6pt] \frac{(\log x)^2}{\log 2 \cdot \log 3} &= \frac{2\log x \cdot \log 3 + 2\log x \cdot \log 2}{\log 2 \cdot \log 3} \\[6pt] (\log x)^2 &= 2\log x \cdot \log 3 + 2\log x \cdot \log 2 \\[6pt] (\log x)^2 &= 2\log x(\log 2 + \log 3) \\[6pt] \log x &= 2(\log 2 + \log 3) \\[6pt] x &= 10^{2(\log 2 + \log 3)} \\[6pt] x &= (10^{\log 2} \cdot 10^{\log 3})^2 \\[6pt] x &= (2 \cdot 3)^2 = 6^2 = \boxed{\textbf{(C) }36} \end{align*}
~sourodeepdeb
Solution 3 (Using Variables)
Let
and
. This gives us the equation
Then, from our definitions of
and
,
and
, so
Taking the logarithm base
of both sides of this equation gives us
, hence
Now, we substitute
for
in the equation, which gives
Notice that we can factor out an
in the numerator and denominator, if
and doing so yields
We know that
so putting that in gives us
So,
, which, using the change of base formula, is equivalent to
thus,
Finally, using our original definition of
we have
so
~hdanger
Video Solution 1 by TheBeautyofMath
https://youtu.be/AKLPjTRPF4Q?t=539
~IceMatrix
See also
| 2024 AMC 12B (Problems • Answer Key • Resources) | |
| Preceded by Problem 7 |
Followed by Problem 9 |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.