Difference between revisions of "2021 Fall AMC 12A Problems/Problem 14"

(New solution added, one that does not use trig. Different from all previous solutions.)
(Added diagram and fixed LaTeX for solution 3)
Line 87: Line 87:
  
 
== Solution 3 ==
 
== Solution 3 ==
 +
The following diagram will be used:
 +
 +
<asy>
 +
size(10cm);
 +
pen p=black+linewidth(1),q=black+linewidth(5);
 +
pair C=(0,0),D=(cos(pi/12),sin(pi/12)),E=rotate(150,D)*C,F=rotate(-30,E)*D,A=rotate(150,F)*E,B=rotate(-30,A)*F,M=(1/2)*(B+F);
 +
draw(C--D--E--F--A--B--cycle,p);
 +
draw(B--F--D--cycle,p+dashed);
 +
draw(A--M,p+dashed);
 +
dot(A,q);
 +
dot(B,q);
 +
dot(C,q);
 +
dot(D,q);
 +
dot(E,q);
 +
dot(F,q);
 +
dot(M,q);
 +
label("$C$",C,2*S);
 +
label("$D$",D,2*S);
 +
label("$E$",E,2*S);
 +
label("$F$",F,2*dir(0));
 +
label("$A$",A,2*N);
 +
label("$B$",B,2*W);
 +
label("$M$",M,2*S);
 +
</asy>
  
 
Start by drawing equilateral triangle <math>BFD</math>, splitting equilateral hexagon <math>ABCDEF</math> into said equilateral triangle as well as congruent isosceles <math>\triangle ABF</math>, <math>\triangle CDB</math>, and <math>\triangle EFD</math>.  
 
Start by drawing equilateral triangle <math>BFD</math>, splitting equilateral hexagon <math>ABCDEF</math> into said equilateral triangle as well as congruent isosceles <math>\triangle ABF</math>, <math>\triangle CDB</math>, and <math>\triangle EFD</math>.  
Line 95: Line 119:
 
<cmath>A_1=x^2\sqrt3</cmath>
 
<cmath>A_1=x^2\sqrt3</cmath>
  
The area of triangle BFD can be written as  
+
The area of <math>\triangle BFD</math> can be written as  
 
<cmath>A_2=(2+\sqrt3)x^2</cmath>
 
<cmath>A_2=(2+\sqrt3)x^2</cmath>
  
Then, the area of hexagon ABCDEF is  
+
Then, the area of hexagon <math>ABCDEF</math> is  
 
<cmath>A=(6+4\sqrt3)x^2</cmath>
 
<cmath>A=(6+4\sqrt3)x^2</cmath>
  
Knowing the area of hexagon ABCDEF is also equal to <math>6\sqrt3</math>, we have
+
Knowing the area of hexagon <math>ABCDEF</math> is also equal to <math>6\sqrt3</math>, we have
 
<cmath>6\sqrt3=(6+4\sqrt3)x^2</cmath>
 
<cmath>6\sqrt3=(6+4\sqrt3)x^2</cmath>
 
Simplifying this, we have
 
Simplifying this, we have

Revision as of 03:06, 11 October 2025

Problem

In the figure, equilateral hexagon $ABCDEF$ has three nonadjacent acute interior angles that each measure $30^\circ$. The enclosed area of the hexagon is $6\sqrt{3}$. What is the perimeter of the hexagon?

[asy] size(10cm); pen p=black+linewidth(1),q=black+linewidth(5); pair C=(0,0),D=(cos(pi/12),sin(pi/12)),E=rotate(150,D)*C,F=rotate(-30,E)*D,A=rotate(150,F)*E,B=rotate(-30,A)*F; draw(C--D--E--F--A--B--cycle,p); dot(A,q); dot(B,q); dot(C,q); dot(D,q); dot(E,q); dot(F,q); label("$C$",C,2*S); label("$D$",D,2*S); label("$E$",E,2*S); label("$F$",F,2*dir(0)); label("$A$",A,2*N); label("$B$",B,2*W); [/asy]

$\textbf{(A)} \: 4 \qquad \textbf{(B)} \: 4\sqrt3 \qquad \textbf{(C)} \: 12 \qquad \textbf{(D)} \: 18 \qquad \textbf{(E)} \: 12\sqrt3$

Solution 1

Divide the equilateral hexagon $ABCDEF$ into isosceles triangles $ABF$, $CBD$, and $EDF$ and triangle $BDF$. The three isosceles triangles are congruent by SAS congruence. By CPCTC, $BF=BD=DF$, so triangle $BDF$ is equilateral.

Let the side length of the hexagon be $s$. The area of each isosceles triangle is \[\frac{1}{2} a b \sin\angle C = \frac{1}{2} \cdot s \cdot s \cdot \sin{30^{\circ}} = \frac{1}{4}s^2.\]

By the Law of Cosines on triangle $ABF$, \[BF^2=s^2+s^2-2s^2\cos{30^{\circ}}=2s^2-\sqrt{3}s^2.\]

Hence, the area of the equilateral triangle $BDF$ is \[\frac{\sqrt{3}}{4} BF^2 = \frac{\sqrt{3}}{4}\left(2s^2-\sqrt{3}s^2\right)=\frac{\sqrt{3}}{2}s^2-\frac{3}{4}s^2.\]

The total area of the hexagon is thrice the area of each isosceles triangle plus the area of the equilateral triangle, or \[3\left(\frac{1}{4}s^2\right)+ \left( \frac{\sqrt{3}}{2}s^2-\frac{3}{4}s^2 \right)=\frac{\sqrt{3}}{2}s^2=6\sqrt{3}.\] Hence, $s=2\sqrt{3}$, and the perimeter of the hexagon is $6s=\boxed{\textbf{(E)} \: 12\sqrt3}$.

Solution 2

We will be referring to the following diagram:

[asy] size(10cm); pen p=black+linewidth(1),q=black+linewidth(5); pair C=(0,0),D=(cos(pi/12),sin(pi/12)),E=rotate(150,D)*C,F=rotate(-30,E)*D,A=rotate(150,F)*E,B=rotate(-30,A)*F,G=(1/2)*(C+E); draw(C--D--E--F--A--B--cycle,p); draw(C--E--A--C,p+dashed); draw(D--G,p+dashed); dot(A,q); dot(B,q); dot(C,q); dot(D,q); dot(E,q); dot(F,q); dot(G,q); label("$C$",C,2*S); label("$D$",D,2*N); label("$E$",E,2*S); label("$F$",F,2*dir(0)); label("$A$",A,2*N); label("$G$",G,2*S); label("$B$",B,2*W); [/asy]

Observe that \begin{align}6\sqrt3=[ACE]-3\cdot[DCE].\end{align} Letting $x=CD,$ the perimeter will be $6x.$

We know that $\angle CDG=75^{\circ}$ and using such, we have \begin{alignat*}{8} CG &= x\sin(75^{\circ}) &&= \frac{\sqrt6+\sqrt2}{4}x, \\ DG &= x\cos(75^{\circ}) &&= \frac{\sqrt6-\sqrt2}{4}x. \end{alignat*} Thus, we have \begin{align*}[ACE]&=\frac{\sqrt3}{4}\left(2\cdot CG\right)^2\\ &=\frac{\sqrt3}{4}(2+\sqrt3)x^2 \\ &=\frac{3+2\sqrt3}{4} x^2.\end{align*} Computing the area of $DCE,$ we have \begin{align*}[DCE]&=\frac12 \cdot 2\cdot CG\cdot DG \\ &=CG\cdot DG\\ &=\frac{x^2}{4}.\end{align*} Plugging back into $(1),$ we have \[6\sqrt3=\frac{3+2\sqrt3}{4} x^2 -\frac{3x^2}{4}=\frac{\sqrt3}{2}x^2,\] which means $x=2\sqrt3$ and $6x=\boxed{\textbf{(E)} \: 12\sqrt3}.$

~ASAB

Solution 3

The following diagram will be used:

[asy] size(10cm); pen p=black+linewidth(1),q=black+linewidth(5); pair C=(0,0),D=(cos(pi/12),sin(pi/12)),E=rotate(150,D)*C,F=rotate(-30,E)*D,A=rotate(150,F)*E,B=rotate(-30,A)*F,M=(1/2)*(B+F); draw(C--D--E--F--A--B--cycle,p); draw(B--F--D--cycle,p+dashed); draw(A--M,p+dashed); dot(A,q); dot(B,q); dot(C,q); dot(D,q); dot(E,q); dot(F,q); dot(M,q); label("$C$",C,2*S); label("$D$",D,2*S); label("$E$",E,2*S); label("$F$",F,2*dir(0)); label("$A$",A,2*N); label("$B$",B,2*W); label("$M$",M,2*S); [/asy]

Start by drawing equilateral triangle $BFD$, splitting equilateral hexagon $ABCDEF$ into said equilateral triangle as well as congruent isosceles $\triangle ABF$, $\triangle CDB$, and $\triangle EFD$.

Along $\overline{BF}$, draw midpoint $M$. Then draw $\overline{AM}$, forming $\triangle ABM$. Note that $\triangle ABM$ is a right triangle with angles of $15^\circ$ and $75^\circ$.

By letting $x=BM$, it can be found that the area of $\triangle ABM$ can be written as \[A_1=x^2\sqrt3\]

The area of $\triangle BFD$ can be written as \[A_2=(2+\sqrt3)x^2\]

Then, the area of hexagon $ABCDEF$ is \[A=(6+4\sqrt3)x^2\]

Knowing the area of hexagon $ABCDEF$ is also equal to $6\sqrt3$, we have \[6\sqrt3=(6+4\sqrt3)x^2\] Simplifying this, we have \[x=\frac{3\sqrt{2+\sqrt{3}}}{3+2\sqrt{3}}\] Additionally, since $x = BM$, the ratios of sides of a right triangle with angles of $15^\circ$ and $75^\circ$ can be used to find $AB = 2x\sqrt{2+\sqrt3}$. It is important to note that the perimeter of hexagon $ABCDEF$ is equal to $6AB$.

Knowing this, the perimeter of hexagon $ABCDEF$ can be written as \[P=6 \cdot 2\sqrt{2+\sqrt3} \cdot \frac{3\sqrt{2+\sqrt{3}}}{3+2\sqrt{3}}\] After simplifying and rationalizing the denominator, we find \[P=\boxed{\textbf{(E)} \: 12\sqrt3}.\]

Video Solution 1 (Trigonometry)

~TheBeautyofMath

Video Solution by SpreadTheMathLove

https://www.youtube.com/watch?v=g6Dk6An2ALY&t=208

See Also

2021 Fall AMC 12A (ProblemsAnswer KeyResources)
Preceded by
Problem 13
Followed by
Problem 15
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC Logo.png