Difference between revisions of "2005 iTest Problems/Problem 10"

(Problem)
(Solution 1)
(Tag: Replaced)
Line 1: Line 1:
==Solution 1==
 
Let <math>x = \frac{43 - 22y}{21}</math> such that <math>1 < \frac{43 - 22y}{21} < 11</math>. This means that <math>-\frac{94}{11} < y < 1</math>. If <math>y \in \mathbb{Z}</math>, then <math>y ={-8,-7,-6,-5,-4,-3,-2,-1,0}</math>. However, none of these values for <math>y</math> results in a complementary integral value for <math>x</math>. Therefore, there are <math>\boxed{0}</math> integer solutions <math>x, y \in \mathbb{Z}</math> that solves <math>21x + 22y = 43</math> over <math>1 < x < 11</math> and <math>y < 22</math>.
 
 
 
==See Also==
 
==See Also==
 
{{iTest box|year=2005|num-b=9|num-a=11}}
 
{{iTest box|year=2005|num-b=9|num-a=11}}

Revision as of 17:26, 13 October 2025

See Also

2005 iTest (Problems, Answer Key)
Preceded by:
Problem 9
Followed by:
Problem 11
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 TB1 TB2 TB3 TB4