During AMC testing, the AoPS Wiki is in read-only mode and no edits can be made.

Difference between revisions of "2024 AMC 12B Problems/Problem 13"

(Solution 2 (Coordinate Geometry and AM-QM Inequality))
(Solution 4 (Also Easy and Fast))
 
(5 intermediate revisions by 2 users not shown)
Line 29: Line 29:
 
~mitsuihisashi14
 
~mitsuihisashi14
  
==Solution 2 (Coordinate Geometry and AM-QM Inequality)==
+
==Solution 2 (Coordinate Geometry and AM-GM Inequality)==
  
 
[[Image:2024_amc_12B_P13_V2.PNG|thumb|center|500px|]]
 
[[Image:2024_amc_12B_P13_V2.PNG|thumb|center|500px|]]
Line 41: Line 41:
 
Note that they will be equal if and only if the circles are tangent,
 
Note that they will be equal if and only if the circles are tangent,
  
Applying the AM-QM inequality (<math> 2(a^2 + b^2) \geq (a+b)^2</math>) in the steps below, we get   
+
Applying the AM-GM inequality (<math> 2(a^2 + b^2) \geq (a+b)^2</math>) in the steps below, we get   
 
<cmath>
 
<cmath>
 
   h + k + 54 = (h + 25) + (k + 29) =\sqrt{(h + 25)}^2 + \sqrt{(k + 29)}^2 \geq \frac{\left(\sqrt{h + 25} + \sqrt{k + 29}\right)^2}{2}
 
   h + k + 54 = (h + 25) + (k + 29) =\sqrt{(h + 25)}^2 + \sqrt{(k + 29)}^2 \geq \frac{\left(\sqrt{h + 25} + \sqrt{k + 29}\right)^2}{2}
Line 50: Line 50:
  
  
~[https://artofproblemsolving.com/wiki/index.php/User:Cyantist luckuso]
+
~[https://artofproblemsolving.com/wiki/index.php/User:Cyantist luckuso],~[https://artofproblemsolving.com/wiki/index.php/User:ShortPeopleFartalot]
  
 
==Solution 3==
 
==Solution 3==
 
[[Image: 2024_AMC_12B_P13.jpeg|thumb|center|600px|]]
 
[[Image: 2024_AMC_12B_P13.jpeg|thumb|center|600px|]]
 
~Kathan
 
~Kathan
 +
 +
==Solution 4 (⚡Very Fast⚡)==
 +
 +
Begin by completing the square for each equation:
 +
<cmath>(x-3)^2 + (y-4)^2 = h + 25</cmath>
 +
<cmath>(x-5)^2 + (y+2)^2 = k + 29</cmath>
 +
 +
We notice that <math>x = 4</math> minimizes the sum of <math>(x-3)^2</math> and <math>(x-5)^2</math>, and <math>y = 1</math> minimizes the sum of <math>(y-4)^2</math> and <math>(y+2)^2</math>. Plug those values into both equations to get <math>1 + 9 = h + 25</math> and <math>1 + 9 = k + 29</math>. Add the two equations to get <math>20 = h + k + 54</math>. Therefore, the minimum value of <math>h + k</math> is <math>\boxed{\textbf{(C)} -34}</math>.
 +
 +
~GeoWhiz4536
  
 
==Video Solution 1 by SpreadTheMathLove==
 
==Video Solution 1 by SpreadTheMathLove==

Latest revision as of 19:07, 2 November 2025

Problem 13

There are real numbers $x,y,h$ and $k$ that satisfy the system of equations\[x^2 + y^2 - 6x - 8y = h\]\[x^2 + y^2 - 10x + 4y = k\]What is the minimum possible value of $h+k$?

$\textbf{(A) }-54 \qquad \textbf{(B) }-46 \qquad \textbf{(C) }-34 \qquad \textbf{(D) }-16 \qquad \textbf{(E) }16 \qquad$


Solution 1 (Easy and Fast)

Adding up the first and second equation, we get: \begin{align*} h + k &= 2x^2 + 2y^2 - 16x - 4y \\ &= 2(x^2 - 8x) + 2(y^2 - 2y) \\  &= 2(x^2 - 8x) + 2(y^2 - 2y) \\ &= 2(x^2 - 8x + 16) - (2)(16) + 2(y^2 - 2y + 1) - (2)(1) \\ &= 2(x - 4)^2 + 2(y - 1)^2 - 34 \end{align*} All squared values must be greater than or equal to $0$. As we are aiming for the minimum value, we set the two squared terms to be $0$.

This leads to $\min(h + k) = 0 + 0 - 34 = \boxed{\textbf{(C)} -34}$

~mitsuihisashi14

Solution 2 (Coordinate Geometry and AM-GM Inequality)

2024 amc 12B P13 V2.PNG

\[(x-3)^2 + (y-4)^2 = h + 25\] \[(x-5)^2 + (y+2)^2 = k + 29\] The distance between 2 circle centers is \[(O_{1}O_{2})^2 = (5-3)^2 + (4 - (-2)) ^2 = 40\] The 2 circles must intersect given there exists one or more pairs of (x,y), connecting $O_{1}O_{2}$ and any pair of the 2 circle intersection points gives us a triangle with 3 sides, then \[radius (O_{1}) + radius (O_{2}) \geq O_{1}O_{2}\] \[\sqrt{h+25} + \sqrt{k+29}   \geq  2\cdot\sqrt{10}\] Note that they will be equal if and only if the circles are tangent,

Applying the AM-GM inequality ($2(a^2 + b^2) \geq (a+b)^2$) in the steps below, we get \[h + k + 54 = (h + 25) + (k + 29) =\sqrt{(h + 25)}^2 + \sqrt{(k + 29)}^2 \geq \frac{\left(\sqrt{h + 25} + \sqrt{k + 29}\right)^2}{2} \geq   \frac{\left(2\sqrt{10}\right)^2}{2} = 20.\]

Therefore, $h + k \geq 20 - 54 = \boxed{C -34}$.


~luckuso,~[1]

Solution 3

2024 AMC 12B P13.jpeg

~Kathan

Solution 4 (⚡Very Fast⚡)

Begin by completing the square for each equation: \[(x-3)^2 + (y-4)^2 = h + 25\] \[(x-5)^2 + (y+2)^2 = k + 29\]

We notice that $x = 4$ minimizes the sum of $(x-3)^2$ and $(x-5)^2$, and $y = 1$ minimizes the sum of $(y-4)^2$ and $(y+2)^2$. Plug those values into both equations to get $1 + 9 = h + 25$ and $1 + 9 = k + 29$. Add the two equations to get $20 = h + k + 54$. Therefore, the minimum value of $h + k$ is $\boxed{\textbf{(C)} -34}$.

~GeoWhiz4536

Video Solution 1 by SpreadTheMathLove

https://www.youtube.com/watch?v=U0PqhU73yU0

See also

2024 AMC 12B (ProblemsAnswer KeyResources)
Preceded by
Problem 12
Followed by
Problem 14
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
All AMC 12 Problems and Solutions

These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions. AMC Logo.png