During AMC testing, the AoPS Wiki is in read-only mode and no edits can be made.

Difference between revisions of "Absolute value"

(rewrite.)
(Undo revision 29156 by Einst72 (Talk))
 
(One intermediate revision by one other user not shown)
(No difference)

Latest revision as of 09:37, 5 January 2009

The absolute value of a real number $x$, denoted $|x|$, is the unsigned portion of $x$. Geometrically, $|x|$ is the distance between $x$ and zero on the real number line.

The absolute value function exists among other contexts as well, including complex numbers.

Real numbers

When $x$ is real, $|x|$ is defined as \[|x| = \begin{cases} x & \text{for } x \ge 0,\\ -x & \text{for } x \le 0.\end{cases}\] For all real numbers $x$ and $y$, we have the following properties:

  • (Alternative definition) $|x| = \sqrt{x^2}$
  • (Non-negativity) $|x| \ge 0$
  • (Positive-definiteness) $|x| = 0 \iff x=0$
  • (Multiplicativeness) $|xy| = |x| |y|$
  • (Triangle Inequality) $|x+y| \le |x|+|y|$
  • (Symmetry) $|x| = |-x|$

Note that

\[|x| \le y \iff -y \le x \le y\]

and

\[|x| \ge y \iff x \ge y \text{ or } x \le -y.\]

Complex numbers

For complex numbers $z$, the absolute value is defined as $|z| = \sqrt{x^2+y^2}$, where $x$ and $y$ are the real and imaginary parts of $z$, respectively. It is equivalent to the distance between $z$ and the origin, and is usually called the complex modulus.

Note that $|z| = |\overline{z}| = \sqrt{z\overline{z}}$, where $\overline{z}$ is the complex conjugate of $z$.

Examples

  1. If $|x|=k$, for some real number $k$, then $x=k$ or $x=-k$.
  2. If $|ax| = k$, for some real numbers $a$, $k$, then $ax = k$ or $ax = -k$, and therefore $x = \frac{k}{a}$ or $x = -\frac{k}{a}$.

Problems

  1. Find all real values of $x$ if $-|x| = x-6$.
  2. Find all real values of $x$ if $5 + 8 \cdot |4x| = 69$.
  3. (AMC 12 2000) If $|x - 2| = p$, where $x < 2$, then find $x - p$.

See Also