Difference between revisions of "2009 AIME II Problems/Problem 3"
m (→Solution) |
Aimesolver (talk | contribs) (→Solution) |
||
| Line 18: | Line 18: | ||
</asy></center> | </asy></center> | ||
From the problem, <math>AB=100</math> and triangle <math>FBA</math> is a right triangle. As <math>ABCD</math> is a rectangle, triangles <math>BCA</math>, and <math>ABE</math> are also right triangles. By <math>AA</math>, <math>\triangle FBA \sim \triangle BCA</math>, and <math>\triangle FBA \sim \triangle ABE</math>, so <math>\triangle ABE \sim \triangle BCA</math>. This gives <math>\frac {AE}{AB}= \frac {AB}{BC}</math>. <math>AE=\frac{AD}{2}</math> and <math>BC=AD</math>, so <math>\frac {AD}{2AB}= \frac {AB}{AD}</math>, or <math>(AD)^2=2(AB)^2</math>, so <math>AD=AB \sqrt{2}</math>, or <math>100 \sqrt{2}</math>, so the answer is <math>\boxed{141}</math>. | From the problem, <math>AB=100</math> and triangle <math>FBA</math> is a right triangle. As <math>ABCD</math> is a rectangle, triangles <math>BCA</math>, and <math>ABE</math> are also right triangles. By <math>AA</math>, <math>\triangle FBA \sim \triangle BCA</math>, and <math>\triangle FBA \sim \triangle ABE</math>, so <math>\triangle ABE \sim \triangle BCA</math>. This gives <math>\frac {AE}{AB}= \frac {AB}{BC}</math>. <math>AE=\frac{AD}{2}</math> and <math>BC=AD</math>, so <math>\frac {AD}{2AB}= \frac {AB}{AD}</math>, or <math>(AD)^2=2(AB)^2</math>, so <math>AD=AB \sqrt{2}</math>, or <math>100 \sqrt{2}</math>, so the answer is <math>\boxed{141}</math>. | ||
| + | |||
| + | == See Also == | ||
| + | |||
| + | {{AIME box|year=2009|n=II|num-b=2|num-a=4}} | ||
Revision as of 12:48, 18 April 2009
Problem
In rectangle
,
. Let
be the midpoint of
. Given that line
and line
are perpendicular, find the greatest integer less than
.
Solution
![[asy] pair A=(0,10), B=(0,0), C=(14,0), D=(14,10), Q=(0,5); draw (A--B--C--D--cycle); pair E=(7,10); draw (B--E); draw (A--C); pair F=(6.7,6.7); label("\(E\)",E,N); label("\(A\)",A,NW); label("\(B\)",B,SW); label("\(C\)",C,SE); label("\(D\)",D,NE); label("\(F\)",F,W); label("\(100\)",Q,W); [/asy]](http://latex.artofproblemsolving.com/b/d/a/bda5479bee464bcc5f5c02a387f2f7ed6129f333.png)
From the problem,
and triangle
is a right triangle. As
is a rectangle, triangles
, and
are also right triangles. By
,
, and
, so
. This gives
.
and
, so
, or
, so
, or
, so the answer is
.
See Also
| 2009 AIME II (Problems • Answer Key • Resources) | ||
| Preceded by Problem 2 |
Followed by Problem 4 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
| All AIME Problems and Solutions | ||