Difference between revisions of "2006 AMC 12B Problems/Problem 15"
m (→Solution: LaTeX fix, replaced \sqrt32 with \sqrt{32}) |
m (→Solution) |
||
Line 37: | Line 37: | ||
== Solution == | == Solution == | ||
− | Draw the altitude from <math>O</math> onto <math>DP</math> and call the point <math>H</math>. Because <math>\angle OAD</math> and <math>\angle ADP</math> are right angles due to being tangent to the circles, and the altitude creates <math>\angle OHD</math> as a right angle. <math>ADHO</math> is a rectangle with <math>OH</math> bisecting <math>DP</math>. The length <math>OP</math> is <math>4+2</math> and <math>HP</math> has a length of <math>2</math>, so by pythagorean's, <math>OH</math> is <math>\sqrt 32</math>. | + | Draw the altitude from <math>O</math> onto <math>DP</math> and call the point <math>H</math>. Because <math>\angle OAD</math> and <math>\angle ADP</math> are right angles due to being tangent to the circles, and the altitude creates <math>\angle OHD</math> as a right angle. <math>ADHO</math> is a rectangle with <math>OH</math> bisecting <math>DP</math>. The length <math>OP</math> is <math>4+2</math> and <math>HP</math> has a length of <math>2</math>, so by pythagorean's, <math>OH</math> is <math>\sqrt{32}</math>. |
<math>2 \cdot \sqrt{32} + \frac{1}{2}\cdot2\cdot \sqrt{32} = 3\sqrt{32} = 12\sqrt{2}</math>, which is half the area of the hexagon, so the area of the entire hexagon is <math>2\cdot12\sqrt{2} = \boxed{(B)} \qquad24\sqrt{2}</math> | <math>2 \cdot \sqrt{32} + \frac{1}{2}\cdot2\cdot \sqrt{32} = 3\sqrt{32} = 12\sqrt{2}</math>, which is half the area of the hexagon, so the area of the entire hexagon is <math>2\cdot12\sqrt{2} = \boxed{(B)} \qquad24\sqrt{2}</math> |
Revision as of 03:18, 23 December 2011
This is an empty template page which needs to be filled. You can help us out by finding the needed content and editing it in. Thanks.
Problem
Circles with centers and
have radii 2 and 4, respectively, and are externally tangent. Points
and
are on the circle centered at
, and points
and
are on the circle centered at
, such that
and
are common external tangents to the circles. What is the area of hexagon
?
Solution
Draw the altitude from onto
and call the point
. Because
and
are right angles due to being tangent to the circles, and the altitude creates
as a right angle.
is a rectangle with
bisecting
. The length
is
and
has a length of
, so by pythagorean's,
is
.
, which is half the area of the hexagon, so the area of the entire hexagon is
See also
2006 AMC 12B (Problems • Answer Key • Resources) | |
Preceded by Problem 14 |
Followed by Problem 16 |
1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
All AMC 12 Problems and Solutions |