Difference between revisions of "2007 AMC 12A Problems/Problem 24"
Fuzzy growl (talk | contribs) (→Solution) |
Einstein00 (talk | contribs) (→Solution) |
||
| Line 45: | Line 45: | ||
This leaves <math>n\equiv 1\pmod{4}</math>. In this case, the divisibility becomes <math>\frac {n + 1}{2}</math> dividing <math>(2j + 1)\frac {n - 1}{4}</math>. Since <math>\frac {n + 1}{2}</math> and <math>\frac {n - 1}{4}</math> are relatively prime (subtracting twice the second number from the first gives 1), <math>\frac {n + 1}{2}</math> must divide <math>2j + 1</math>. Since <math>j\leq \frac {n - 1}{2}</math>, <math>2j + 1\leq n < 2\cdot \frac {n + 1}{2}</math>. Then there is only one intersection, namely when <math>j = \frac {n - 1}{4}</math>. | This leaves <math>n\equiv 1\pmod{4}</math>. In this case, the divisibility becomes <math>\frac {n + 1}{2}</math> dividing <math>(2j + 1)\frac {n - 1}{4}</math>. Since <math>\frac {n + 1}{2}</math> and <math>\frac {n - 1}{4}</math> are relatively prime (subtracting twice the second number from the first gives 1), <math>\frac {n + 1}{2}</math> must divide <math>2j + 1</math>. Since <math>j\leq \frac {n - 1}{2}</math>, <math>2j + 1\leq n < 2\cdot \frac {n + 1}{2}</math>. Then there is only one intersection, namely when <math>j = \frac {n - 1}{4}</math>. | ||
| − | Therefore we find <math>F(n)</math> is equal to <math>1 + \lfloor n/2 \rfloor + \left \lfloor \frac {n + 1}{2}\right\rfloor = n + 1</math>, unless <math>n\equiv 1\pmod{4}</math>, in which case it is one less, or <math>n</math>. | + | Therefore we find <math>F(n)</math> is equal to <math>1 + \lfloor n/2 \rfloor + \left \lfloor \frac {n + 1}{2}\right\rfloor = n + 1</math>, unless <math>n\equiv 1\pmod{4}</math>, in which case it is one less, or <math>n</math>. The problem may then be finished as in Solution 1. |
== See also == | == See also == | ||
Revision as of 22:15, 17 February 2012
Problem
For each integer
, let
be the number of solutions to the equation
on the interval
. What is
?
Solution
Solution 1
By looking at various graphs, we obtain that, for most of the graphs
However, when
, the middle apex of the sine curve touches the sine curve at the top only one time (instead of two), so we get here
.
Solution 2
So
if and only if
or
.
The first occurs whenever
, or
for some nonnegative integer
. Since
,
. So there are
solutions in this case.
The second occurs whenever
, or
for some nonnegative integer
. Here
so that there are
solutions here.
However, we overcount intersections. These occur whenever
which is equivalent to
dividing
. If
is even, then
is odd, so this never happens. If
, then there won't be intersections either, since a multiple of 8 can't divide a number which is not even a multiple of 4.
This leaves
. In this case, the divisibility becomes
dividing
. Since
and
are relatively prime (subtracting twice the second number from the first gives 1),
must divide
. Since
,
. Then there is only one intersection, namely when
.
Therefore we find
is equal to
, unless
, in which case it is one less, or
. The problem may then be finished as in Solution 1.
See also
| 2007 AMC 12A (Problems • Answer Key • Resources) | |
| Preceded by Problem 23 |
Followed by Problem 25 |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | |
| All AMC 12 Problems and Solutions | |