Difference between revisions of "1991 AIME Problems/Problem 9"
Zhuangzhuang (talk | contribs) m (→Solution 1) |
(→Solution 1) |
||
| Line 17: | Line 17: | ||
Let <math>y = \frac mn</math>. Then squaring, | Let <math>y = \frac mn</math>. Then squaring, | ||
| − | <cmath>\csc^2 x = (y - \cot | + | <cmath>\csc^2 x = (y - \cot x)^2 \Longrightarrow 1 = y^2 - 2y\cot x.</cmath> |
Substituting <math>\cot x = \frac{1}{\tan x} = \frac{308}{435}</math> yields a [[quadratic equation]]: <math>0 = 435y^2 - 616y - 435 = (15y - 29)(29y + 15)</math>. It turns out that only the [[positive]] root will work, so the value of <math>y = \frac{29}{15}</math> and <math>m + n = \boxed{044}</math>. | Substituting <math>\cot x = \frac{1}{\tan x} = \frac{308}{435}</math> yields a [[quadratic equation]]: <math>0 = 435y^2 - 616y - 435 = (15y - 29)(29y + 15)</math>. It turns out that only the [[positive]] root will work, so the value of <math>y = \frac{29}{15}</math> and <math>m + n = \boxed{044}</math>. | ||
Revision as of 19:48, 13 January 2013
Problem
Suppose that
and that
where
is in lowest terms. Find
Contents
Solution
Solution 1
Use the two trigonometric Pythagorean identities
and
.
If we square the given
, we find that
This yields
.
Let
. Then squaring,
Substituting
yields a quadratic equation:
. It turns out that only the positive root will work, so the value of
and
.
Solution 2
Recall that
, from which we find that
. Adding the equations
together and dividing by 2 gives
, and subtracting the equations and dividing by 2 gives
. Hence,
and
. Thus,
and
. Finally,
so
.
Solution 3
(least computation) By the given,
and
.
Multiplying the two, we have
Subtracting both of the two given equations from this, and simpliyfing with the identity
, we get
Solving yields
, and
Solution 4
Make the substitution
(a substitution commonly used in calculus).
, so
.
Now note the following:
Plugging these into our equality gives:
This simplifies to
, and solving for
gives
, and
. Finally,
.
Solution 5
We are given that
, or equivalently,
. Note that what we want is just
.
See also
| 1991 AIME (Problems • Answer Key • Resources) | ||
| Preceded by Problem 8 |
Followed by Problem 10 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
| All AIME Problems and Solutions | ||