Difference between revisions of "2001 USAMO Problems/Problem 3"
m (→See also) |
|||
Line 28: | Line 28: | ||
[[Category:Olympiad Algebra Problems]] | [[Category:Olympiad Algebra Problems]] | ||
[[Category:Olympiad Inequality Problems]] | [[Category:Olympiad Inequality Problems]] | ||
+ | {{MAA Notice}} |
Revision as of 13:37, 4 July 2013
Problem
Let and satisfy

Show that

Solution
First we prove the lower bound.
Note that we cannot have all greater than 1.
Therefore, suppose
.
Then
Now, without loss of generality, we assume that and
are either both greater than 1 or both less than one, so
. From the given equation, we can express
in terms of
and
as

Thus,

From the Cauchy-Schwarz Inequality,

This completes the proof.
See also
2001 USAMO (Problems • Resources) | ||
Preceded by Problem 2 |
Followed by Problem 4 | |
1 • 2 • 3 • 4 • 5 • 6 | ||
All USAMO Problems and Solutions |
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.