Difference between revisions of "1987 AIME Problems/Problem 9"
(rev) |
|||
| Line 19: | Line 19: | ||
{{AIME box|year=1987|num-b=8|num-a=10}} | {{AIME box|year=1987|num-b=8|num-a=10}} | ||
[[Category:Intermediate Geometry Problems]] | [[Category:Intermediate Geometry Problems]] | ||
| + | {{MAA Notice}} | ||
Revision as of 18:09, 4 July 2013
Problem
Triangle
has right angle at
, and contains a point
for which
,
, and
. Find
.
Solution
Let
. Since
, each of them is equal to
. By the Law of Cosines applied to triangles
,
and
at their respective angles
, remembering that
, we have
Then by the Pythagorean Theorem,
, so
and
See also
| 1987 AIME (Problems • Answer Key • Resources) | ||
| Preceded by Problem 8 |
Followed by Problem 10 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
| All AIME Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.
