Difference between revisions of "2000 AIME I Problems/Problem 9"
(finish solution) |
|||
| Line 36: | Line 36: | ||
[[Category:Intermediate Algebra Problems]] | [[Category:Intermediate Algebra Problems]] | ||
| + | {{MAA Notice}} | ||
Revision as of 18:49, 4 July 2013
Problem
The system of equations
\log_{10}(2yz) - (\log_{10}y)(\log_{10}z) & = & 1 \\ \log_{10}(zx) - (\log_{10}z)(\log_{10}x) & = & 0 \\
\end{eqnarray*}$ (Error compiling LaTeX. Unknown error_msg)has two solutions
and
. Find
.
Solution
Since
, we can reduce the equations to a more recognizable form:
Let
be
respectively. Using SFFT, the above equations become (*)
From here, multiplying the three equations gives
Dividing the third equation of (*) from this equation,
. This gives
, and the answer is
.
Alternatively, at (*), notice that the RHS of the first two equations are the same, so
. Substituting this into the third equation gives
, which if we solve backwards for
will give us the same answer.
See also
| 2000 AIME I (Problems • Answer Key • Resources) | ||
| Preceded by Problem 8 |
Followed by Problem 10 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 | ||
| All AIME Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.