Difference between revisions of "1994 AJHSME Problems/Problem 7"
Mrdavid445 (talk | contribs) (Created page with "If <math>\angle A = 60^\circ </math>, <math>\angle E = 40^\circ </math> and <math>\angle C = 30^\circ </math>, then <math>\angle BDC = </math> <asy> pair A,B,C,D,EE; A = origin;...") |
|||
| (2 intermediate revisions by 2 users not shown) | |||
| Line 1: | Line 1: | ||
| + | ==Problem== | ||
| + | |||
If <math>\angle A = 60^\circ </math>, <math>\angle E = 40^\circ </math> and <math>\angle C = 30^\circ </math>, then <math>\angle BDC = </math> | If <math>\angle A = 60^\circ </math>, <math>\angle E = 40^\circ </math> and <math>\angle C = 30^\circ </math>, then <math>\angle BDC = </math> | ||
| Line 14: | Line 16: | ||
<math>\text{(A)}\ 40^\circ \qquad \text{(B)}\ 50^\circ \qquad \text{(C)}\ 60^\circ \qquad \text{(D)}\ 70^\circ \qquad \text{(E)}\ 80^\circ</math> | <math>\text{(A)}\ 40^\circ \qquad \text{(B)}\ 50^\circ \qquad \text{(C)}\ 60^\circ \qquad \text{(D)}\ 70^\circ \qquad \text{(E)}\ 80^\circ</math> | ||
| + | |||
| + | |||
| + | ==Solution== | ||
| + | The sum of the angles in a triangle is <math>180^\circ</math>. We can find <math>\angle ABE = 80^\circ</math>, so <math>\angle CBD = 180-80=100^\circ</math>. | ||
| + | |||
| + | <cmath>\angle BDC = 180-100-30=\boxed{\text{(B)}\ 50^\circ}</cmath> | ||
| + | |||
| + | ==See Also== | ||
| + | {{AJHSME box|year=1994|num-b=6|num-a=8}} | ||
| + | {{MAA Notice}} | ||
Latest revision as of 00:13, 5 July 2013
Problem
If
,
and
, then
Solution
The sum of the angles in a triangle is
. We can find
, so
.
See Also
| 1994 AJHSME (Problems • Answer Key • Resources) | ||
| Preceded by Problem 6 |
Followed by Problem 8 | |
| 1 • 2 • 3 • 4 • 5 • 6 • 7 • 8 • 9 • 10 • 11 • 12 • 13 • 14 • 15 • 16 • 17 • 18 • 19 • 20 • 21 • 22 • 23 • 24 • 25 | ||
| All AJHSME/AMC 8 Problems and Solutions | ||
These problems are copyrighted © by the Mathematical Association of America, as part of the American Mathematics Competitions.